DEEP LEARNING COURSE FINAL PROJECT

Tensorflow[1], MXNet[2], Theano[3]

Yiwei Bai, 5140309316
Lequn Chen, 5140309565
Huichen Li, 5140309194

January 15, 2017

CONTENTS

[1_Task formalization 3
30 D 7 3
(1.2 Challenges| 3

[2 Sparks for bonus| 3

3_Model Evolution 3
[3.1 Basic DNN on Original Feature| 3

[3.1.1 Two-layer DNN:12—-40—4], 4
[3.1.2 Three-layer DNN:12-80—-15—-4| 4
[3.1.3 Results and Comparison|. 4
[3.1.4 TryingtoElevate] 4
2 nvolutional Neural Network| 4
[3.2.1 L2 Regularization| 5
[3.2.2 AdjustingOutputLayer| 5
[3.2.3 TryingtoElevate] 5
E reSelection| 6
[3.3.1 Cubic Spline Interpolation| 6
.. 7
[3.3.3 Dynamic Programming, 9
[3.3.4 Finite Impulse Response|. 9
[3.3.5 TryingtoElevate| o .. 9

4_Code Architecture 10

[4.1 Multi-GPU training| o vt e e e e e e 10
411 Tensorflowl 10
....................................... 11
I3 Theanal . . -« v v oo e e e e e 11
BIA ReSUlts . . oo e et 11

[4.2 Designofthe framework|. 11

[5 Platform Comparison| 11
[5.1 Encapsulation| 11
.. 12
[5.3 Computational Graph| 12

5.3.1 Dimensionl. e e e e e e e 12

[5.4 Numerical Stability| 13

[6_Referencel 15

1 TASK FORMALIZATION

The task is to design a tone classifier to output the tone label.

1.1 DATA

We are given the f0/engy files as the input. The f0 and energy features are extracted from
corresponding wav files. Each wav file is the pronunciation of a single Chinese character.

1.2 CHALLENGES

SMALL DATA AMOUNT The data amount in this task is very limited. So models that are too
complex cannot be used here.

VARIOUS LENGTHS The lengths of different wav files are different. Hence, the f0/engy files
corresponding to different characters also have different length. For the same character, the f0
file has exactly the same length as the engy file.

UNCONFORMITY IN TRAIN AND TEST The training data is clean, pronounced by professional
speakers, while the test data has noise in it, with characters spelled not so accurately. Thus,
the training samples and the test samples are not extracted from the same distribution. This is
different from normal tasks where we have the assumption that training data has the same
distribution as test data.

2 SPARKS FOR BONUS

* Various Feature Selection techniques(see Section [Feature Selection).

* A Multi-GPU training (see SectionMulti-GPU training) was implemented.

* A well designed code architecture (see Section|Design of the framework).

3 MODEL EVOLUTION

We decided to construct a Deep Neural Network to do the classification in our project.

SLIDING WINDOW To solve the challenge of the lengths of features being diverse, we adopt
the method of sliding windows to make features be the same length.

3.1 BAsic DNN ON ORIGINAL FEATURE

Having made the features equal length, we built roughly two types of DNNs, one with two
layers and one with three layers. In both cases, relu is used as the activation function. Every
layer is fully connected layer. Tuning the hyper parameters gives us the following model:

3.1.1 TwO-LAYER DNN:12-40-4

The input has dimension 12 as we use sliding windows to partition each feature file into 12
blocks. The hidden layer is of dimension 40. And in order to output one of the four tone labels,
the output dimension is set to be 4.

layer | fully connected 1 | fully connected 2
dimension | 12 x40 40 x 4

3.1.2 THREE-LAYER DNN:12-80-15—-4

The input and output dimension is the same with the two-layer DNN model. We changed one
hidden layer of 40 units to two hidden layers, one with 80 units, the other 15.

layer | fully connected 1 | fully connected 2 | fully connected 3
dimension | 12 x 80 80 x15 15x4

3.1.3 RESULTS AND COMPARISON

The table below shows the performance on accuracy of the two networks when we divide
the input into different sizes. The accuracy values are averages over 5 trainings. Based on
this comparison, we chose 12 as our input size.The number of hidden units are tuned during
training.

inputsize | 2—40—-4 DNN | 2-80—-15—-4 DNN
8 | 85.27% 86.60%
12 | 88.84% 88.83%
15 | 81.25% 85.26%
18 | 81.25% 86.16%

UNSATISFACTORY RESULTS The performance on test data cannot go above 90 percent accu-
racy in our basic DNN models, which is not very good.
3.1.4 TRYING TO ELEVATE

ADJUSTING DIRECTION We also take more complex models into account, for example, CNN.

3.2 CONVOLUTIONAL NEURAL NETWORK

The fragments are relatively short, so we consider using CNN instead of RNN or LSTM. We are
using complex models while avoiding overfitting or other drawbacks.
After careful design and fine tuning, the CNN structure we picked is the following:

layer | kernel number | kernel/weight size
convolution 1 | 96 (1x10)
maxpool 1 | None (1x2)
convolution 2 | 108 (1x10)
maxpool 2 | None (1x2)
convolution 3 | 108 (1x10)
maxpool 3 | None 1x2)
convolution4 | 16 (1x10)
flatten layer | None None
Followed by
layer | dropout probability | fully connected dimension
fully connected 1 | None (2x128)
dropout | 0.5 None
fully connected 2 | None (128 x 40)
fully connected 3 | None (40 x 4)

3.2.1 L2 REGULARIZATION

The average accuracy of CNN and DNN with/without regularization:

This experiment is an extension of a bug in the model code. Normally the number of output
layer is the same with the number of final classes. But adjusting the number of output layers
gives us some interesting results, both on the variance and the accuracy. Adding output units
has different impacts on CNN and DNN. The performance may get higher, or fall lower. But

Accuracy | With L2 reg | Without L2 reg
DNN | 88.96% 88.83%
CNN | 92.10% 89.90%

3.2.2 ADJUSTING OUTPUT LAYER

on the whole, the variance is reduced. See the table below:

ADJUSTING DIRECTION Given data that is so sparse, the task kind of degenerate to the time
when machine learning was limited by small amount of data, and people aided computers
by selecting the 'important features’ for the algorithm by their domain specific knowledge.
We realize maybe we should generate more useful features from the original data file for the

layers | 4 10 20
Var | DNN | 3.09458 | 2.9599 0.71506
CNN | 3.49015 | 0.5126 0.12702
Accuracy | DNN | 88.83% | 87.75% | 89.45%
CNN | 92.10% | 89.638% | 89.0172%

3.2.3 TRYING TO ELEVATE

model to learn. This is where feature selection comes in.

3.3 FEATURE SELECTION

In training neural networks, the f0 data is what we really use. But there are some problems
with the original 0 data.

* They contain noise for our network model. There are features that consist of noise rather
than useful patterns.

* They are too sparse, the sample rate is low so there are not enough data points.

In selecting features, what we are actually doing is throwing away useless information so
that the remaining features capture the real underlying patterns of the audio that we need
in recognition. After that, we use some methods to create new data points based on the
remaining useful information after throwing away noise.

3.3.1 CUBIC SPLINE INTERPOLATION

The interpolation is used here because the original data points are too sparse. In the project
we did the followings:

* Let the maximum value in an .engy file be M. Discard the data points that are below a
threshold of 0.15M for we treat them as noise. The corresponding points in f0 file are
discarded simultaneously. The comparison of performance when choosing different
thresholds is plotted below

0.90

0.85

accuracy

0.80

0.75

0.00 0.05 0.10 0.15 0.20 0.25 0.30
strip ratio

* Use cubic spline interpolation to fit engy and f0 points. The data before and after the
interpolation is plotted in|Figure3.1 and Figure 3.2|below.

* Pick points in the fitted f0 function equidistantly as the newly generated features.

3.3.2 MFCC

In the tutorial[4], a method called MFCC is introduced. MFCC is inspired by human auditory
system and used for extracting features in sound processing. Here are several key ideas about
MECC:

 For simplicity, although an audio signal is constantly changing, we make the assumption
that it doesn’t change much during short time intervals statistically.

¢ Identifying which frequencies like what the human cochlea does so we calculate the
power spectrum of each frame.

e The human ears couldn’t discern the difference between two closely spaced frequencies
so we take clumps of periodogram bins and sum them up to get an idea of how much
energy exists in various frequency regions. As the frequencies get higher our filters get
wider as we become less concerned about variations.

* As human being don’t hear loudness on a linear scale, we take the logarithm of the
filterbank energies.

The number of MFCCs and f0s we use

¢ for DNN model:

MEFCC | f0
number | 6 12
¢ for CNN model:
MEFCC | f0
number | 6 100

After a linear combination of MFCC and fO(simple concatenation) is used as the feature, the
results are

Numcep | 13(default) | 6 None(Without mfcc)
DNN | 89.8% 87.9% | 88.83%
CNN | 89.69% 92.10% | 90.11%

2500

2000

1500

engy

1000

1200

1000

800

600

engy

2500

2000

1500

engy

1000

1200

1000

800

engy

600

Plots before and after cubic spline interpolation

gengl

300

26 20 0 80
gu3
300
250
200
150 :
100
50
20 a0 0 80 100 20

0
140

engy

engy

2500

2000

1500

1000

2500

2000

1500

1000

500

huang2
10 20 30 a0 30 0 70 30
jiang4

) 60 80 100

Figure 3.1: Raw engy and f0 data

170
160
150
140
e
130
120
110
100

engy

2500

2000

1500

2500

2000

1500

1000

huang2

50 100 150 2

jiangd

N

Figure 3.2: Processed engy and f0 data

3.3.3 DYNAMIC PROGRAMMING

We adopt this method based on the assumption that naturally, the audio of Chinese characters
should be relatively smooth.

As the original data contains noise, we want to manually evaluate its smoothness and throw
away noise based on the evaluation. The evaluation function we chose is

(i— prepos)m"' (folil - prefo)"

PTepos is the position of the last data point we picked. m and n are hyper parameters we tuned.
We get m =4 and n =2 in our experiment. The impact on performance is shown below:

Accuracy | With DP | Without DP
DNN | 87.96% | 88.83%
CNN | 90.63% | 92.10%

3.3.4 FINITE IMPULSE RESPONSE

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response
(or response to any finite length input) is of finite duration, because it settles to zero in finite
time.[6]

Accuracy | With FIR | Without FIR
DNN | 89.52% 88.83%
CNN | 91.51% 92.10%

3.3.5 TRYING TO ELEVATE

Up to now, the best accuracy of our CNN and DNN models are:

Best Accuracy
DNN | 92.40%
CNN | 95.04%

The structure of the best model(click to see):

e DNN structure

layer | fully connected 1 | fully connected 2 | fully connected 3
dimension | 18 x 80 80x15 15x4

This structure differs a little from the[previous DNN structure|because we add MFCC
feature here. Actually 18 = 12 + number of MFCC points = 12 + 6.

« [CNN structure

The feature for the best model(click to see):

* [DNN feature]
¢ [CNN feature

The parameters that we use are:

model | learning rate | Ir decay | optimizer
DNN | 0.0004 1.0 SGD
CNN | 0.001 1.0 Adam

The code of the project is posted in Github[7].

ADJUSTING DIRECTION Not only do we want better results on accuracy, faster speed is also
what we are pursuing all the time. We want to make use of thejmulti GPUs|to speed up the
training.

4 CODE ARCHITECTURE

4.1 MULTI-GPU TRAINING

As we are in an era of what people call 'Big Data), it's important to know how to do multi-GPU
training. The support and ability of scheduling job on multi-GPUs of DL platforms are critical
here.

4.1.1 TENSORFLOW

We implemented a simple data parallel multi-GPU model on Tensorflow. Every mini batch is
dispatched to different GPUs where the loss is calculated and sent back. The parameters are
updated based on the loss.

POINT TO NOTICE When using Tensorflow on GPU, we need to be very careful. TF was
designed to use up all the memory in GPU if we don’t declare usage explicitly. So we need to
set the 'gpu_options’ manually. We allow GPU memory to grow by the fraction we set. See
code fragments below for more information:

config = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)
config.gpu_options.allow_growth=True

self.sess = tf.Session(config=config)

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:

10

4.1.2 MXNET

Thanks to the intermediate representation mechanism adopted by MXNet, it is relatively
easy to implement a multi-GPU version on MXNet. The optimazation can be done with high
efficiency.

import mxnet as mx
model = mx.model.FeedForward(ctx=[mx.gpu(@), mx.gpu(2)], ...)

4.1.3 THEANO

Theano doesn’t have much support for multi-GPU, so we have to write many low level code
explicitly, like how to transfer data between CPU and GPU, how to store parameters on GPUs,
etc.

4.1.4 RESULTS

Empirically, using eight GPUs can achieve a speed up of about 4 to 5 times on a complex model

when the cost of transferring data is constrained by careful design. However, in small projects

like this one, the cost of overhead in data transmission surpasses other improvements, so the

overall performance falls instead. The time cost is shown below:

Single GPU:
O LS

build_model time 4.1461279392242432s
train 100 epoch time 26.3535840511322021s

Multiple GPU:
4

build_model time 6.4497821331024170s

train 100 epoch time 154.6884040832519531s

4.2 DESIGN OF THE FRAMEWORK

* The separation of model and training. We separate model and training so that the reuse
of model is convenient.

» The explicit processing of data. We choose to process first each time before training.

5 PLATFORM COMPARISON

5.1 ENCAPSULATION

THEANO

11

* Theano was not invented for deep learning specific usage. So some basic operations in
DL were not included. For example,

— Inthe function 'conv2d’[5], there were no arguments like "padding="SAME’", which
makes it a little inconvenient to use.

e Theano is implemented in low level compared to the others. This makes it hard to use
for newcomers, but it also allows for inspiration.

TENSORFLOW

» Tensorflow has the highest capacity. It has a great variety of functions encapsulated
inside with plenty of adjustable arguments.

MXNET

* As ayoung project, short of funding and support as the founders claim officially, MXNet
is in bad need for more detailed documents and tutorials. There is only API Reference
for newcomers.

e MXNet has only a limited number of layers encapsulated, and there are only a few
parameters that can be tuned compared to Tensorflow.

5.2 SPEED
model | platform time to build model time to train(200 epochs)
Tensorflow | 0.3806691169738770s | 20.3759698867797852s
DNN | Theano 0.5839521884918213s | 3.0449399948120117s
MXNet 0.0004229545593262s | 19.3520941734313965s

Tensorflow | 0.9123530387878418s | 271.7300508022308350s
CNN | Theano 3.4809811115264893s | 876.6990518569946289s
MXNet 0.0007259845733643s | 1459.4064869880676270s

5.3 COMPUTATIONAL GRAPH

The expression ability of the three are comparable. Their workflow are similar: after building
the computational graph, they would take care of the derivatives for us. However, there are
some slight difference between them.

We can even write a library on our own and build model on this basis. By choosing the backend,
we can transfer to the platform we want easily.

5.3.1 DIMENSION

For example, if there are a couple of convolution layers,

* In Theano, both the input dimension and the number of filters for the current layer and
the previous layer are needed.

12

* In Tensorflow, the input dimension is not needed explicitly, but we need to write out the
number of filters for the current layer and the previous layer.

* In MXNet, neither the input dimension nor the number of filters for the previous layer is
needed. All we have to write out explicitly is the number of filters for the current layer.

platform | Theano | Tensorflow | MXNet
input dimension | required | not required | not required
number of filters for current layer | required | required required
number of filters for previous layer | required | not required | not required

TENSORFLOW We can declare dimension for 'Placeholder’s in Tensorflow, while in the other

platforms this can’t be done.

MXNET Usually we don’t need to calculate dimensions on our own. MXNet will take care of

the dimension transformation for us.

THEANO All dimensions must be declared clearly.

5.4 NUMERICAL STABILITY

In the experiment, we realize that the numerical stability of the three platforms are different.

* The validation loss of the same model using the same parameters on the three platforms

over epochs is plotted below in|Figure 5.1 and 5.2|

* By examining these oscillation curves, it’s clear that among the three platforms, MXNet

is the most unstable numerically. Theano comes next in instability. Tensorflow is the

best among the three.

13

loss

loss

1.4

1.4

0.0

Validation Loss:

same model, same parameters except for the optimizers,
different platforms, over epochs

tensorflow
theano
mxnet

150

200

tensorflow
theano
mxnet

50

Figure 5.2:

100

150

epoch
Training DNN using SGD

200

14

(7]

6 REFERENCE

REFERENCES

Tensorflow, https://www.tensorflow.org/api_docs/
Flexible and Efficient Library for Deep Learning, http://mxnet.io/
Theano Docs, http://deeplearning.net/software/theano/#

Mel Frequency Cepstral Coefficient (MFCC) tutorial, http://www.
practicalcryptography.com/miscellaneous/machine-learning/
guide-mel-frequency-cepstral-coefficients-mfccs/

Theano Convolution, http://deeplearning.net/software/theano/library/
tensor/signal/conv.html

Finite Impulse Response, https://en.wikipedia.org/wiki/Finite_impulse_
response”oldformat=true

Project code, https://github.com/bywbilly/DeepLearning-Final-Project

15

https://www.tensorflow.org/api_docs/
http://mxnet.io/
http://deeplearning.net/software/theano/#
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://deeplearning.net/software/theano/library/tensor/signal/conv.html
http://deeplearning.net/software/theano/library/tensor/signal/conv.html
https://en.wikipedia.org/wiki/Finite_impulse_response?oldformat=true
https://en.wikipedia.org/wiki/Finite_impulse_response?oldformat=true
https://github.com/bywbilly/DeepLearning-Final-Project

	Task formalization
	Data
	Challenges

	Sparks for bonus
	Model Evolution
	Basic DNN on Original Feature
	Two-layer DNN: 12-40-4
	Three-layer DNN: 12-80-15-4
	Results and Comparison
	Trying to Elevate

	Convolutional Neural Network
	L2 Regularization
	Adjusting Output Layer
	Trying to Elevate

	Feature Selection
	Cubic Spline Interpolation
	MFCC
	Dynamic Programming
	Finite Impulse Response
	Trying to Elevate

	Code Architecture
	Multi-GPU training
	Tensorflow
	MXNet
	Theano
	Results

	Design of the framework

	Platform Comparison
	Encapsulation
	Speed
	Computational Graph
	Dimension

	Numerical Stability

	Reference

