
Vašek Chvátal
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Key words. Vašek, Chvátal

1. Young Genius — notes by AB

Raised in Plzeň, renowned for its brewery, Vašek studied mathematics at Charles Uni-
versity in Prague under the tutelage of Zdeněk Hedrĺın, along with Pavol Hell, Luděk
Kučera and Jarik Nešetřil. There he was trained in the algebraic aspects of graph theory,
publishing his first paper [14], appropriately on rigid digraphs (those with only trivial
endomorphisms), at the tender age of nineteen.

In August 1968, Vašek and his then wife Jarmila decided that their future lay elsewhere
but in the clutches of his homeland’s unwelcome guests. After a brief stop in Vienna and an
encounter with a ghost in Hyde Park, Vašek made landfall in Fredericton, New Brunswick,
where he set his mind to positional games on hypergraphs and Ramsey-type problems.
It was at the pivotal Calgary meeting the following summer that many of my generation
first met one another, and this was so for Vašek and myself. Vašek was already a seasoned
researcher, having written some half-dozen papers on a variety of topics. The following
autumn, he enrolled as a Ph.D. student with Crispin Nash-Williams. It took him just a
year to obtain his doctorate. He sailed through the notorious comprehensive exams that
Crispin was in the habit of setting, and found time between bouts of research to drink
beer, eat pigtails and play shuffleboard with fellow Czech and Slovak emigrés at a country
saloon called the Blue Moon. There he initiated me in the niceties of the Czech language.
It will come as no surprise that he was an outstanding teacher.
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Vašek’s doctoral thesis, on Hypergraphs and Ramseyian Theorems, gave rise to several
publications, notably [16]. Vašek subsequently wrote a series of papers with Frank Harary
where they introduced and studied generalized Ramsey numbers [39], [40], [41].

During that year, two mathematicians were to have a significant influence on the di-
rection of Vašek’s future research. One was Nash-Williams, the other Jack Edmonds.
Nash-Williams gave a graduate course on Hamilton cycles. As a support for the course,
he had prepared a fifty-page manual of definitions and notation, including formal defi-
nitions of ordered and unordered pairs, the distinction between circuits (sequences) and
circuitoids (subgraphs), as well as idiosyncratic notation, the most memorable of which
was the ‘lampshade’ of a set. Only the most complicated of Greek letters, ξ, η and ζ ,
would do for names of vertices. Despite or perhaps because of this, the course left its
mark on all of us. Vašek inherited Nash-Williams’ insistence on precision, but preferred
the brisk clear style, expressive language, and crisp notation that exemplify his writings
and lectures. (In explaining Zykov’s proof of Turán’s theorem to me many years ago, he
referred to a certain stable set as ‘fly-shit’ — that proof is now engraved in my mem-
ory. More recently, sharks and swimmers were invoked during a talk on instances of the
Travelling Salesman Problem. His pedagogical talents extend to everyday life. Once, hav-
ing been served a very tough steak, he carefully shaped it into the form of a shoe sole
and left it lying eloquently on the plate.) One of the theorems covered by Nash-Williams
was Pósa’s sufficient condition for hamiltonicity, a weakening of Dirac’s degree condition.
Shortly afterwards, Vašek came up with a best possible result of this type [17]. (It was in
searching for an algorithmic proof of this theorem a few years later that we conceived the
hamiltonian closure operation [11].) Vašek wrote several influential papers on the topic
of Hamilton cycles, notably [22], where he introduced the notion of toughness, a graph
being t-tough if no more than k components result from the deletion of fewer than (k+1)t
vertices. There he proposed the conjecture that every t-tough graph is hamiltonian pro-
vided that t is large enough. Even though his initial guess of t > 3/2, and later t = 2,
proved to be too optimistic [7], the conjecture remains very much alive. Vašek reduced his
Erdős number to one by coming up with an elegant sufficient condition for hamiltonicity
in terms of the stability number and connectivity [38], and this during a car ride with
the P.G.O.M. from Pullman to Spokane, WA. With characteristic courtesy, Vašek thanks
Louise Guy for her steady driving. At a Summer Research Institute in Quebec City in
the summer of 1971, Vašek constructed infinite families of hypohamiltonian graphs [21],
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but also found time to learn French, fall in love with his French teacher, and write a
prize-winning short story, Déjà Vu.

For the record, it should be mentioned here that he had a hand or two in an NP-
completeness result on Hamilton cycles [77], namely that deciding whether a graph has a
hamiltonian square is NP-complete, published by one P. (for Polly) Underground whose
main profession was not mathematics. (Polly also makes an appearance in Vašek’s highly
regarded and much used text Linear Programming.) There was also an unpublished note
entitled ‘A sufficient condition for a graph to be almost complete’, which showed that a
certain sufficient condition for hamiltonicity, touted by its author at a Florida meeting
as superior to existing conditions (such as Vašek’s degree condition) because high density
was not required, was satisfied only by circuits or extremely dense graphs.

It was Edmonds who introduced Vašek to the world of linear programming. Vašek
quickly realised its potential role in NP-hard problems such as the hamiltonian and
travelling salesman problem [19], [20]. Indeed, as David, Bruce and Bill recount below,
the connections between linear programming and perfect graphs and Hamilton cycles have
occupied Vašek’s fertile mind for the past thirty-five years. Among his early results was
the One-Two-Three Theorem. Defining a graph to be weakly hamiltonian if there is a
function on its edge set satisfying four sets of linear inequalities that are valid for any
hamiltonian graph (three of these are straightforward, while the fourth introduced the
important notion of comb inequalities), he proved that a weakly hamiltonian graph is
necessarily 1-tough, has a 2-factor, and is 3-cyclable (any three vertices lie on a cycle).

As Vašek explains in a tribute to Claude Berge [33], he first encountered the ‘mâıtre’ in
a Plzeň bookshop in 1964, where a Russian translation of Berge’s first book, lying in wait
for him, seduced him into graph theory. He met Berge in person at the Calgary meeting
five years later, and they became close friends. At the Hypergraph Seminar in Columbus
in 1972, organized by Berge and Dijen Ray-Chaudhuri, he proposed a now-famous and
still unsolved conjecture on hereditary hypergraphs [23]. It is informative to quote the
Math. Review by Paul Erdős, no stranger to hypergraph extremal problems:

The author states the following surprising conjecture: Let F be a family of subsets
of a finite set S such that if X ∈ F , Y ⊂ X then Y ∈ F ; consider a subfamily of
F any two sets of which intersect and which has the largest number of sets; we can
obtain such a family by considering all X ∈ F which contain a suitable element t
of S. The author proves several special cases of this beautiful conjecture.

In a typically extravagant gesture, Vašek [42] offered $10.00 for a proof or counterex-
ample. (His coauthors of this collection of combinatorial problems, David Klarner and
Donald Knuth, wisely appended the disclaimer ‘All cash awards are Chvátal’s responsi-
bility’. The reward offered for settling his conjecture on toughness was somewhat more
generous.) The hereditary hypergraph conjecture has been the topic of some twenty arti-
cles (see http://users.encs.concordia.ca/∼chvatal/conjecture.html).

Also at the Hypergraph Seminar, having failed in our attempt to ‘get the young genius
drunk’ (and then proceed to turn him into an alcoholic, thereby eliminating him from
mathematical competition), he joined forces with Laci Lovász, proving the pretty result
that every digraph has a semi-kernel, a stable set reachable from every vertex in at most
two steps [43].

It is hard to do justice to Vašek’s prolific and remarkably eclectic output during the
late 60’s and early 70’s. To mention just three further examples, he found a colourful
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attractive extension of the Gallai-Roy theorem on paths in digraphs [18], proved a theorem
in plane geometry [25] — commonly referred to as Chvátal’s Art Gallery Theorem — which
determines the number of guards required to survey the walls of a polygonal art gallery
(and has prompted much research), and constructed the smallest triangle-free 4-chromatic
4-regular graph, a beautiful graph now known as the Chvátal graph [15]:

The promise of those early years has been amply fulfilled.

2. Linear Programmer—notes by DA

In a typically succinct fashion, the abstract of Vašek’s 1984 technical report “Cutting-
plane proofs and the stability number of a graph” [31] states his position on, and contri-
bution to, the connection between linear programming and combinatorics.

Many claims in combinatorics can be stated by saying that every integer solution
of a specified system of linear inequalities satisfies another specific inequality. Such
claims can be proved in a certain canonical way involving the notion of cutting
planes. We investigate the structure of these proofs in the particular case where
the claim is that a specified graph contains at most a specified number of pairwise
nonadjacent vertices.

Two of the paper’s important results will be stated below, but first let us look at their
origins. Vašek became interested in linear programming during his postdoctoral year,
1970-71. Its usefulness as a tool for combinatorial optimization had been spectacularly
demonstrated by Edmonds a few years earlier in his efficient solution of the weighted
matching problem for graphs [51]. Of particular interest was Edmonds’ use of the duality
theorem of linear programming to produce “good characterizations”, or what we would
now call “certificates of optimality”. In the brief period before the dark clouds of NP-
hardness appeared, there was considerable optimism that this method would soon knock
off a number of other apparently similar problems. Three such graph theory problems that
were of particular interest to Vašek were finding a largest stable set, a minimum vertex
colouring, and a Hamiltonian circuit.

Vašek spent the summer of 1971 in Quebec City, the fall at McGill, and the winter of
1972 at Stanford. Under the slogan “combinatorics = number theory + linear program-
ming,” Vašek set out a general framework for this approach in “Edmonds Polytopes and
a Hierarchy of Combinatorial Problems” [19]. He defined the closure of a system of linear
inequalities to be the set of inequalities valid for its integer solutions. He proved that all
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such inequalities could be obtained by a finite process of taking positive combinations
of inequalities and rounding. This procedure gave rise to a natural notion of the rank,
now known as Chvátal rank, of the inequality, and indeed for an integer program itself.
Although the main theorem can be proved using the finiteness of Gomory’s integer pro-
gramming algorithm, [54], Vašek gave an elementary proof that is simple enough that it
has found its way into several integer programming textbooks. The integer inequalities
generated are now known as “Chvátal-Gomory cuts”. And the paper contains much more,
including, naturally, applications to independent sets, graph colouring, and Hamiltonian
circuits. The paper was submitted in May 1972.

During the time the paper was written, Stephen Cook [47] and Richard Karp [64]
announced results that were to change the landscape forever. These results are mentioned
in the revised version of the paper, submitted in May 1973, in the concluding remarks.
After citing them he writes:

One may be tempted to believe that each class of zero-one linear programming prob-
lems having a bounded rank possesses a polynomial time algorithm. If this were true
then, in particular, there would be a polynomial time algorithm searching for the
largest independent sets in perfect graphs.

For in the summer of 1972, Vašek had attended a meeting in Columbus, Ohio where
Lovász [69] presented his proof of the weak perfect graph theorem. As Adrian has men-
tioned, Vašek had heard of perfect graphs from Berge several years earlier. Lovász’s result
(and independent work of Fulkerson) connected them to linear programming. This con-
nection was spelled out in the subsequent paper “On Certain Polytopes Associated with
Graphs” [24], and was fortuitous. NP-hardness had essentially eliminated the possibility of
extending Edmonds’ methods to obtaining polynomial time solutions to Vašek’s favourite
problems for general graphs. The game now was to find large classes of interesting graphs
for which hard problems were tractable. Perfect graphs were known to include compa-
rability graphs, chordal graphs and line graphs of bipartite graphs, for which finding a
maximum independent set or a minimum vertex colouring were solvable in polynomial
time. A perfect class of graphs to study was at hand. In the winter of 1972 Vašek started
to consider the problem of recognizing perfect graphs in polynomial time. He noticed that
the first two of these special classes of perfect graphs could be recognized by placing the
vertices in a special ordering. But I digress - perfect graphs will be covered by Bruce in the
next section. The paper [24] had a number of other interesting results, including this gem:
two stable sets in a graph are adjacent in the corresponding stable set polytope if and only
if their symmetric difference defines a connected graph. As a corollary, by considering line
graphs, a similar statement can be made for matchings. Vašek’s contributions to linear
programming continue with his arrival at Stanford in the fall of 1974.

The squeal of tires, a white Ford Mustang, and the sound of the Beatles “Rubber Soul”
announce Vašek’s arrival at Encina Hall, the bucolic location of Stanford’s Department of
Operations Research. The department was home to George Dantzig himself, the father of
linear programming, and benefactor of most of the doctoral students in the department,
myself included. I was then working on a dissertation in queuing theory. Suddenly Vašek
appeared in my office, cigarette holder in hand, and sporting a red headband. He asked
me to proof-read “Some linear programming aspects of combinatorics” [26]. It had an
abstract that read, rather unpromisingly:
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This is the text of a lecture given at the Conference on Algebraic Aspects of Combi-
natorics at the University of Toronto in January 1975. The lecture was expository,
aimed at an audience with no previous knowledge of linear programming.

I was less than enthusiastic. To put this in context, like most of my classmates, I thought
I had seen the last of linear programming with the five hour comprehensive exam the year
before. His paper opened my eyes. What we had considered to be a dead subject was here
being used to prove Sperner’s lemma, the Erdös-Ko-Rado theorem, and ... the pigeon hole
principle!? It also contained a digest of his two papers mentioned above. The message was
clear: linear programming belonged in the tool kit of every discrete mathematician. I was
hooked - and Vašek had a doctoral student.

Stanford was famous for devouring assistant professors: three years of teaching the
courses no one else wanted, then off to a new job. Vašek had the unenviable task of
teaching linear programming to Master’s students in operations research, for most of
whom mathematics was not their strong point. Descriptions of the subject at the time
tended to be rather dry, technical, unintuitive and use lots of unfriendly notation. What
was needed was a simple, intuitive but precise introduction to the subject that would
be useful to student and working mathematician alike. During the Christmas vacation of
1975, that was precisely what Vašek wrote. I had spent the vacation in Mexico with some
friends, and when I returned Vašek told me he had written a book on linear programming.
I was sure he was joking, but he gave me his manuscript, which was a little over 100 pages
long. I started reading it that evening, and kept reading until it was finished. It was a
masterpiece of technical writing. The manuscript circulated quickly. Everybody read it,
everybody loved it, and everybody said, “It’s perfect, but, if you would just add a chapter
on ...... it would be even better.” Meanwhile, we students speculated that such an upstart
would never get tenure by showing up the master. 1

Vašek wanted some new results that his book would be the first to contain, but the
subject had remained relatively dormant for some time. Then in his 1976 doctoral thesis,
Bland announced pivot rules for the simplex method that did not cycle. A particularly
simple rule involved merely choosing each candidate variable with smallest subscript. In
the summer of 1976 Vašek returned to Montreal to work at the Centre de Recherches
Mathématiques. Having just finished the first draft of my thesis, and I expected it would
be a month of Sundays before he got around to reading it. Suddenly Vašek called me
up and invited me to come to Montreal. We would work together to see whether Klee
and Minty’s examples also applied to Bland’s rule, I would repeat the Kuhn-Quandt
experiments for it, and he would read my thesis. It was half a lifetime ago: Vašek was
30. Ivo Rosenberg was away and kindly let us stay in his house. To give Vašek more
reading time, I was his driver in a clapped out car that barely made it up the hill to the
CRM. Filling the tank was a lengthy affair as it also required filling the oil and changing
the spark plugs. The blur of cafés, restaurants, strip clubs, beautiful women and 24 hour
flower shops quickly convinced me that Montreal was where I would look for a job. We
ended up getting the results on Bland’s rule, but needless to say the paper [6] did not get
written until after we went back to California.

Returning to Stanford in the Fall of 1976, Vašek diligently set out to keep all of those
people happy who had read his manuscript. He first learned, then wrote chapters on,
implementation, networks, games, applications, geometry, generalized upper bounding,

1 We were wrong, he got it.
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Dantzig-Wolfe decomposition, branch and bound and so on. The work continued after he
moved back to Montreal in 1977, first at the Université de Montréal, then at McGill from
1978. The long, brutal Montreal winters of those days provided plenty of time to work on
the book, but the summers were another matter.

In the summer of 1978 Vašek summoned me to Paris from Belgium, where I was doing
a postdoc. We discussed the possibility of making our living off the glitterati of Saint
Tropez during an exquisite lunch with Jean-François Maurras, that lasted most of an
afternoon. The next day Vašek and I jetted off to the Côte D’Azur to try our luck with a
new career. Needless to say, we were back at McGill by Autumn. The following summer
we went to Japan and met Jin, as described in the Preface to this issue.

During the next few years, Vasek dutifully devoured all of the material suggested to
him for his expanded book, thoroughly digested it, and then rewrote it in the same clear
concise style that characterized his original manuscript. History, ever willing to repeat
itself, records that while the text was in its final stages, Khachian [65] announced the
first polynomial time linear programming algorithm, the ellipsoid method. The ellipsoid
algorithm made it into the text as an appendix, an exposition that is still one of the
best available, and is widely reproduced. When Linear Programming [30] finally appeared
in 1983, it was immediately proclaimed the definitive text on the subject. The original
manuscript, recognizable, but not quite intact, is the first part of the book and a complete
course in itself. On the cover was a reproduction of a painting by his close friend, the
artist François de Lucy, which was an image that Vašek said reminded him of all the
paper crumpled up along the way.

For the next thread of the story, we go back to Stanford. In the mid-70s there was still
hope that the P = NP question might be tractable. The conventional wisdom was that
these classes were different, and computer scientists were using the tools of their trade to
try and resolve the issue. If P and NP really were different, then cutting planes ought to
be weak for solving hard integer programs. This is what Vašek proved for a related, but
weaker proof system, for one of his favourite problems, determining the size of the largest
independent set in a graph [19]. The paper is long and the proof is difficult. The paper
contains a prescription for generating random graphs for which with high probability every
proof in this system has exponential length. Similar results, for which the arguments are
much simpler, were given for the knapsack problem in [29]. The much-cited paper on
randomly generated hard examples for resolution [46], written jointly with Szemerédi, is
the climax of this series.

Now we return to Vašek’s 1984 technical report, the abstract of which began this
section, and its two main results. For any vertex v of a graph G associate a variable xv,
and consider the systems

∑

v∈C

xv ≤ 1 for all cliques C in G (1)

−xv ≤ 0 for all vertices v of G

and ∑

v∈G

xv ≤ α(G) (2)

where α(G) is the size of the largest independent set in G. His first theorem reads:
Theorem 1. There are arbitrarily large graphs G and a positive constant ǫ such that the
depth of every cutting-plane proof of (2) from (1) exceeds ǫn.
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His second theorem reads:
Theorem 2. There are arbitrarily large graphs G with α(G) = 2 such that the depth of
every cutting-plane proof of (2) from (1) exceeds 1

3
ln n.

The method of the 1984 paper was extended and applied to a wide variety of other
combinatorial problems in a subsequent paper with Bill Cook and Mark Hartmann [37].
One of the applications was to two objects dear to my heart, the cut and metric polytopes,
so I cannot resist including it here. The cut polytope is the convex hull of zero-one vectors
defined by the edge sets of cuts in a complete graph. The metric polytope its natural
relaxation defined by considering all triangle inequalities on the same set of variables. An
important class of facets of the cut polytope (see for example [50]), called pure hypermetric
facets by Michel Deza, are defined for any complete graph H on 2t + 1 vertices by

∑

e∈E(H)

xe ≤ t(t + 1). (3)

The case t = 1 is an example of a triangle inequality. It is shown in [37] that the depth of
any cutting place proof of (3) from the metric polytope is at least (t − 1)/2.

By 1983 with the book out of the way, Vašek started to focus his attention on per-
fect graphs, and the strong perfect graph conjecture. He gathered an exceptional group
of talented graduate students, the exploits of whom Bruce describes below. For me, a
sabbatical year in Japan in 1983-4 put me so far behind the group that to catch up was
impossible. Soon after Vašek was to leave Montreal, and it would be almost 20 years
before he returned :

Un Canadien errant
Banni de ses foyers
Parcourait en pleurant
Des pays étrangers. 2

It was the end of an era.

3. Perfectionist—notes by BR

In typically irreverent fashion, Vašek’s book Linear Programming begins with a quote
which captures one of the strengths of this polished gem.

Suppose you want to teach the cat concept to a very young child. Do you explain
that a cat is a relatively small, primarily carnivorous mammal with retractile claws,
a distinct sonic output, etc.? I’ll bet not. You probably show the kid a lot of dif-
ferent cats saying kitty each time until it gets the idea. To put it more generally,
generalizations are best made by abstraction from experience. 3

That he routinely introduces complex ideas via a sequence of simple and crystal-clear
examples is just one of the reasons Vašek is a great teacher. Once he had settled at
McGill, Sensei gathered around him a group of disciples, in whom he instilled his passion
for perfect graphs. We were attracted to him like moths to a flame and began to burn
with the same inner fire.

2 From “Un Canadien Errant”, by Antoine Gérin-Lajoie (1837)
3 R.P. Boas, American Math. Monthly, 88, 727-731 (1981).
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Perfect graphs were defined by Berge, a very close friend whom Vašek sometimes
called Master. Berge’s definition was motivated by a question posed by Shannon on the
asymptotic transmission rates of noisy channels [75]. A graph G is said to be perfect if
for each of its induced subgraphs H , there is a set of α(G) cliques covering its vertices.
In 1960, Berge observed that a chordless cycle of length 2k + 1, k ≥ 2 cannot be covered
by k edges. He also observed that the complement of such a cycle cannot be covered by
2 cliques. Hence any graph containing an induced odd cycle of length at least five or the
complement of such a cycle is not perfect. After searching in vain for other examples of
imperfect graphs, Berge made the following conjecture [8]:

A graph G is perfect precisely if neither G nor G contains an induced odd cycle of
length at least five.

This conjecture became known as the Strong Perfect Graph Conjecture. The term
Weak Perfect Graph Conjecture was reserved for its corollary

If a graph is perfect then so is its complement.

which was proved by Lovász in 1971 [68].

Lovász’s result is equivalent to the statement that the vertices of every induced sub-
graph H of a perfect graph can be covered by α(H) cliques. Hence the depth of the cutting
plane proof of (2) from (1) is zero for all such graphs. This is equivalent to saying that
for any 0− 1 weight vector w, we can choose an integer-valued x∗ in the fractional stable
set polytope of G (the polytope defined by the set (1) of inequalities) which maximizes
wx over this polytope.

In [24], Vašek noted Lovász’s proof of the WPGC implies that much more is true. He
showed that we can actually choose an integer valued x∗ maximizing wx for any weight
vector w.4 Put another way, the fractional stable set polytope has only integer vertices.
Thus, we can characterize some of those 0-1 matrices A such that Ax ≤ 1, x ≥ 0 has only
integer vertices as the fractional stable set polytopes of perfect graphs. It turns out that
all such matrices can be characterized in this fashion (provided we remove redundant
constraints). Thus, characterizing perfect graphs yields a characterization of a natural
class of integer programs which are solvable in polynomial time using Khachian’s linear-
time algorithm for Linear Programming. This consequence of Vašek’s observation spurred
interest in perfect graphs in the combinatorial optimization community.

Despite the strength and beauty of Vašek’s result, it does not imply that we can
determine α(G) for perfect G by constructing and solving this LP, as the number of
cliques in a perfect graph G with n vertices may be as large as 2n/2. However, in 1979
Grötschel, Lovász, and Schrijver [58] wrote a seminal paper which showed that actually
the result can be combined with the ellipsoid method to find maximum weight stable sets
in perfect graphs in polynomial time.

4 To prove this statement it is enough to prove it for integer valued w (since we can approximate reals
by rational and renormalize rationals to integers). For any such w, he considered an associated graph
Gw whose vertex set is the union of stable sets S1, ..Sn where |Si| = wi and u ∈ Si is joined to v ∈ Sj

precisely if vivj is an edge of G. It is not hard to see that the weight of a maximum weight stable set
x∗ of G is the same as the size of the largest stable set of Gw. Lovász’s result easily implies that Gw is
perfect, and hence has a covering using α(Gw) cliques. Each of these cliques corresponds in an obvious
way to a clique of G. So we obtain a set of wx∗ cliques of G such that each vi is contained in wi of these
cliques. The corresponding inequalities of (1) now show that wx∗ maximizes wx over this polytope.
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With the optimization question answered, Vašek turned his attention to possible char-
acterizations of perfect graphs. As David has mentioned, one of his approaches involved
obtaining characterizations via vertex orderings. This work is discussed in Ryan Hay-
ward’s paper in this volume [61]. We will focus on a different approach. We introduce it
with a quote from a tribute to Berge written by Vašek [35]:

There are theorems that elucidate the structure of objects in some class C by showing
that every object in C has either a prescribed and relatively transparent structure or
one of a number of prescribed structural faults along which it can be decomposed.

Vašek decided to apply this paradigm to Berge Graphs , i.e. graphs G such that neither
G nor its complement contains an induced odd cycle with at least five vertices. He hoped
to thereby both prove the Strong Perfect Graph Conjecture and develop a polynomial time
recognition algorithm for the class of perfect graphs (see [32] where he first suggested this
approach).

With Vašek leading the way, we went to work. I started my M.Sc. in January of 1983
and immediately began to attend a weekly seminar on perfect graphs. Other students of
Vašek who attended were Ch́ınh Hoàng, Ryan Hayward, and Stefan Olariu. David Avis,
Sue Whitesides, and Jean-Marie Bourjolly put in occasional appearances. The atmosphere
was electric. The seminars were scheduled for three hours but could go on for much longer.
If we started to play backgammon they could last all night.

Initially, Vašek simply gave us a long list of problems and asked us to try and solve
them. The seminar was devoted to the presentation of solutions and the discussion of ap-
proaches. Through solving the problems, we learnt of a number of special types of perfect
graphs to which the paradigm had already been successfully applied: triangulated graphs
had been decomposed using clique cutsets; comparability graphs had been decomposed
using homogeneous sets.

Once we were sufficiently bloodied, the Master began to educate us in earnest. Fonlupt
and Uhry had recently decomposed the class of graphs in which every odd cycle of length
five had at least two chords (these graphs were called Meyniel, as it was Meyniel who
proved they were perfect), using the so-called amalgam decomposition. Sensei prepared a
crystal clear set of notes explaining their complicated decomposition procedure and led
us through them.

It was in the spring of 1983 that Vašek introduced two important notions: star cutsets
and skew partitions. A star cutset is a cutset containing a vertex v which sees all the other
vertices of the cutset. A skew partition is a partition of V (G) into two sets A and B such
that A induces a disconnected subgraph of G and B induces a disconnected subgraph of
G. We note that if (A, B) is a skew partition of G then (B, A) is a skew partition of G.
We also note that if G has a star cutset B with at least two vertices then (V − B, B) is
a skew partition of G.

In a seminal paper [34], Vašek proved that no minimal imperfect graph contains a star
cutset. He also observed that this result implied that minimal imperfect graphs had no
homogenous sets, had no clique cutsets, and did not permit amalgam decompositions.
Thus star cutsets could be used to prove the perfection of almost all the special classes of
Berge graphs which had been shown to be perfect. Spurred on by Vašek, Ryan Hayward
[60] proved that weakly triangulated graphs 5 are perfect using the existence of star cutsets
in these graphs. These last two results suggested that star cutsets were a powerful tool.

5 G is weakly triangulated if neither G nor G contains an induced cycle of length at least five
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Vašek thought that skew partitions might be even more important because of their self-
complementarity, which mirrored this property of perfect graphs. In [34], he conjectured
that no minimal perfect graph permits a skew partition.

Motivated by self-complementarity, he turned his attention to bull-free Berge graphs.
A bull is the graph obtained from a triangle by adding two pendant vertices attached
to distinct vertices of the triangle; it is self-complementary. Vašek, working with Najiba
Sbihi, proved that bull-free Berge Graphs are perfect [45]. In order to do so, they needed
to introduce a new decomposition, the homogenous pair 6. They showed that no minimal
imperfect graph contains a homogeneous pair. Using this decomposition and star cutsets,
they managed to show that every bull-free Berge graph is perfect.

Vašek’s intuition as to the decompositions needed to prove the Strong Perfect Graph
Conjecture were spot on. Indeed, Chudnovsky, Robertson, Seymour, and Thomas recently
proved that every Berge graph either:

(a) is in one of five basic classes of perfect graphs (line graphs of bipartite graphs, their
complements, bipartite graphs, their complements, or double split graphs), or

(b) permits one of three partitions (a proper 2-join, a homogeneous pair, or a special type
of skew partition which they call balanced7).

Of the three decompositions they used, two were defined by Vašek and the third was
also one on which he focused the perfect graph community’s attention. Indeed, Vašek and
I co-organized a conference on perfect graphs in Princeton in 1993. The only talks were by
Conforti and Cornuejols who had recently decomposed balanced graphs using 2-joins and
some other star-cutset like decompositions. We thought that these ideas could be the last
pieces needed to solve the perfect graph puzzle. This was indeed the case. Thus Vašek’s
vision as always was excellent, and the work carried out in those heady days in the mid
1980s played an important role in the resolution of the Strong Perfect Graph Conjecture.

Of course, Vašek was not satisfied with just studying perfect graphs during this period
(see [44]). He would not be tied down in this way [36]. He went to the World Backgammon
Championship in 1984, organized the first mathematical workshop at McGill’s Bellairs
Research Institute, made friends with J.P. Donleavy and Panther, took his cubs to a
conference in Hakone organized by Jin Akiyama, and wrote a book which beginners could
use to learn the first two hundred kanji.

He also maintained two interests David has already mentioned: trying to find large
classes of problems which require exponential time to solve when attacked using a standard
approach, and obtaining solutions to integer programs from solutions to their fractional
relaxations. In [46], he and Szemerédi showed that for every k ≥ 3 and c ≥ 2k, almost
every satisfiability instance of cn clauses is unsatisfiable but any resolution-based proof
of its unsatisfiability requires exponential time. In [28], he showed that the the chromatic
number of any graph is O(log n) times its fractional chromatic number8. Actually, he

6 A homogenous pair consists of two disjoint sets of vertices S1 and S2 such that every vertex outside
of S1 ∪ S2 is adjacent to all of S1 or none of S1 and is adjacent to all of S2 or none of S2. Furthermore,
we insist that 3 ≤ |S1 ∪ S2| ≤ |V | − 2.

7 The first balanced skew cutsets which were shown not to occur in perfect graphs were the T -cutsets.
This was done by Chinh Hoang while he was a student of Vašek [62]. For more on the history of this type
of skew cutset and the role Vašek played see [71].

8 A fractional α-colouring is an assignment of non-negative weights to the stable sets of G so that the
sum of the weights of the stable sets containing each vertex is one. The fractional chromatic number is
the minimum α for which G has a fractional α-colouring.
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proved something stronger. He showed that a simple greedy heuristic could find a solution
to any weighted set cover9 problem whose size was at most log n times the cost of an
optimal fractional solution.

I graduated in 1986; it was a third of a lifetime ago and Vašek was 40. David had
been like a brother to Vašek, I felt more like a son. This was not because Vašek had
put distance between us. It was against Vašek’s religion to pretend that his position and
academic credentials somehow put him on a different plane from his students or anyone
else. Even the standard roping in of graduate students for joe jobs in return for all the
time you invested in them was anathema to him. There was an immediateness, integrity
and essential humanity in Vašek’s interactions, which few if any other supervisors would
have matched. And we spent a lot of time playing as equals: bedtime stories at the Ritz,
randomly chosen shops in Tokyo, the Salon de Livres in Paris and Chez Paris, Nena Hagen
in both English and German, and Blondie’s immortal

I’m in the phone booth, it’s the one across the hall. If you don’t answer then I’ll just
ring it off the wall.

Despite this closeness, Vašek was above all my mentor. Indeed I had been floundering
and unmotivated as an undergraduate. My decision to go to graduate school and become
an academic was inspired solely by my exposure to his brilliant lectures and charming wit
when I took a course from him in my last year.

His mentoring continued throughout graduate school. We had countless meals at the
Coffee Mill on Mountain Street. After acknowledging the waitress with their standard
exchange10, lighting a cigarette, and starting to eat, he would begin to explain a new
theorem to me. Possibly one of his results. Possibly a breakthrough obtained by another
researcher. These recitals never failed to fascinate me and I spent as much time with
Vašek as he allowed.

I hope that the reader who thinks I have spent too much time discussing my relationship
with Vašek will forgive me. I have done so because I do not believe my experience was
unique. Vašek brought magic into my life, from what colleagues have told me, others feel
touched by this magic even if they have just listened to one of his lectures or chatted with
him for fifteen minutes.

In short then, during my years as a student, Vašek was a pussycat. I often find myself,
when faced with a decision as to what to do as a supervisor asking: what would the kitty
do? I do not always live up to his example but I am a better man for trying.

4. Traveling Salesman—notes by WC

In a typically modest fashion, Vašek [4] introduced our computational work on solving
instances of the traveling salesman problem.

Dantzig, Fulkerson, and Johnson showed a way to solve large instances of the TSP;
all that came afterward is just icing on the cake. The purpose of the present paper
is to describe some of the icing we have added on top of the previous layers.

9 In a set cover problem we are given some subsets of a ground set and need to find the minimum
number of subsets whose union contains the ground set. In graph colouring, the ground set is the vertex
set and the subsets are the stable sets
10 Greetings Comrade, formerly Hello
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This short remark was the subject of much discussion, leading to pictures of cakes in
lectures [74] and writings [1,78,2].

The TSP asks for a minimum cost hamiltonian circuit, or tour, in a graph G = (V, E)
with edge costs; the original 1954 paper of Dantzig et al. [49] presents the solution of a
42-city instance of the problem via a sequence of LP relaxations. Dantzig et al. record a
tour as a 0-1 vector x = (xe : e ∈ E), where xe = 1 if and only if e is in the tour. An
LP relaxation for the TSP consists of a family of linear inequalities satisfied by all tour
vectors. A modest-sized starting point consists of bounds 0 ≤ xe ≤ 1, for each edge e,
and equations ∑

(xe : e meets vertex v) = 1, (1)

for each vertex v. Such an LP can be easily solved with the simplex algorithm, and a dual
solution provides a lower bound on the cost of any tour. To improve this bound, Dantzig
et al. locate additional inequalities that are valid for all tours but violated by the LP
optimal solution x∗. A selection of these inequalities, called cutting planes, or just cuts,
are added to the relaxation and the process is repeated. The primary supply of cuts in
[49] are the subtour constraints

∑
(xe : e has exactly one end in S) ≥ 2

for each proper subset S ⊂ V . A collection of these cuts were found by hand in their
work. Together with two ad-hoc inequalities, the subtour cuts formed a relaxation that
established the optimal value of a tour through their 42 cities.

Vašek was of course in a perfect position to focus attention on the ground breaking
work of Dantzig et al. It was Vašek [19] himself who introduced the concept of comb
inequalities that brought the cutting-plane approach to new heights, following Gomory’s
[55] call to action and Hong’s [63] branch-and-cut computer code. Vašek’s theme was
taken up by Martin Grötschel and Manfred Padberg [59], who championed the use of
combs in the TSP in the late 1970s and 80s.

In Grötschel and Padberg’s work a comb consists of subsets T0, T1, . . . , Ts of V , such
that s is odd and at least 3, the sets (Tj : j = 1, . . . , s) are pairwise disjoint, and for each
j ≥ 1 the set Tj contains at least one vertex in T0 and at least one vertex not in T0. Vašek
called T0 the handle and (Tj : j = 1, . . . , s) the teeth of the comb; in his version each
tooth must intersect the handle in exactly one vertex. Every TSP tour satisfies the comb
inequality

s∑

j=0

∑
(xe : e has exactly one end in Tj) ≥ 3s + 1.

The inclusion of combs as a source of cutting planes is a powerful extension of the subtour
cuts, as can be seen in the success of the Grötschel-Padberg-led work [48,56,57,70]. Along
with these computations, combs have also been the focus of many theoretical studies. An
important open question here is to determine the complexity of the separation problem
for combs, that is, given an LP vector x∗, find a violated comb inequality if one exists;
no polynomial-time algorithm is known for the problem and it is also not known to be
NP -hard.

After the publication of Vašek’s comb paper in 1974, he remained interested in the
TSP, mainly through research on hamiltonian graphs. In was in Oberwolfach, January
1987, where we began our TSP work together. At an evening problem session, Martin
Grötschel discussed several questions regarding the Chvátal rank of the subtour relaxation
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of the TSP. The subtour relaxation consists of all subtour inequalities, together with the
equations (1), for all vertices, and the bounds 0 ≤ xe ≤ 1, for all edges. The main
question posed by Grötschel was to show that the Chvátal rank of the relaxation cannot
be bounded above by any constant as the number of vertices increases. It was known that
the rank was at least two, but no further lower bounds were available.

After a brisk walk down to the village pub, Vašek proposed that we jump on the
problem, feeling that a couple of glasses of beer, several kirschwassers, and a study of
non-hamiltonian graphs would be a good place to start. As usual, Vašek was right on the
money; a class of graphs from his flip-flop paper [21] was just what the doctor ordered.
When a break was called for we joined in a few songs with the locals at the pub, who
quickly pronounced Vašek as the most likeable mathematician ever to set foot in their
fair valley. We managed to come away with enough notes to settle Grötschel’s problem,
showing that the Chvátal rank grew at least linearly with the number of vertices.

The subtour relaxation result was the starting point for a lengthy study of lower bounds
on the rank of other polyhedra, carried out by Vašek, Mark Hartmann, and myself [37].
As this work drew to a close, it seemed logical to attempt to turn the ideas into an attack
on solving instances of the TSP. Inspiration here came from a second session from the
1987 Oberwolfach meeting, where Manfred Padberg presented fresh work with Giovanni
Rinaldi on the computation of an optimal tour for a 2,392-city instance. We thought we
had enough tricks up our sleeves to give the area another push, and decided on February
27, 1988, that it was time to give it a go.

The next day we purchased a desktop PC from a vendor in lower Manhattan. Curiously,
when the main technician at the shop learned that we were mathematicians he warned
“You guys aren’t going to try to solve that traveling salesman problem, are ya?” But
that is just what we had in mind. A few days later we contacted Dave Applegate, a
star PhD student working with Ravi Kannan at Carnegie Mellon, and the project was
up and running. Initially we attempted various combinatorial techniques for obtaining
lower bounds, but we gradually drifted back towards traditional LP-based methods. This
period came to a head in a crash coding session over two days in April 1990 in Montreal,
producing a simplex algorithm specially tailored for the TSP. Although this worked fairly
well, the code could not beat Bob Bixby’s newly released general simplex implementation
CPLEX 1.0.

Later in April 1990 we arrived at Rice University for a TSP Workshop organized by
Bob Bixby at the Center for Research in Parallel Computing. Our work was a bit of a
mystery, but it was known that we had been studying the TSP for the past two years.
When our session came around, Vašek began his lecture with a line by line history of the
largest solved instances: Dantzig-Fulkerson-Johnson 42 cities, Held-Karp 57 cities, . . . ,
Padberg-Rinaldi 2,392 cities. Keeping the bottom portion of his slide covered, he noted
the point in 1988 where we “got into the game.” With the crowd on its heels, he slowly
revealed the final line: Applegate-Chvátal-Cook 17 cities. This was an exaggeration of the
state of our project, but it was true that we had more ideas than computational results
at that point.

In the aftermath of the meeting, Vašek kept reminding us that you need to get up
pretty early in the morning if you are going to beat the simplex algorithm. We thus made
a wise move and convinced Bob Bixby to join our project. With Bob churning out ever
faster versions of the LP solver, we focused our attention on the generation of cutting
planes to keep the solver busy.
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In this work, Vašek viewed the search for cuts as a two-step process. First, by fair
means or foul, he would locate a flaw in our current LP solution x∗, that is, a property of
x∗ that could not be possessed by a convex combination of tours. Second, following the
theme of his cutting-plane work in the 1970s, he would find a way to expose this flaw via
a linear inequality. This is the method employed in a heuristic separation algorithm for
combs based on the consecutive ones property ([5], Chapter 8). In this case, the flaw is
specified by a family F of subsets of vertices such that each member S ∈ F satisfies

∑
(x∗

e : e has exactly one end in S) = 2,

no member of S contains vertex v0, and F does not have the consecutive ones property.
To spot such a flaw, we can employ the linear-time algorithm of Booth and Lueker [10]
for testing the consecutive ones property. An immediate cutting plane exposing F is

∑

S∈F

∑
(xe : e has exactly one end in S) ≥ 2|F| + 2,

but this can be weak in the sense that it may be the sum of smaller valid inequalities. A
nice twist, however, follows from an old theorem of Tucker [76], implying that a minimal
consecutive-ones flaw F is in fact a three-toothed comb, yielding a method to spot these
much sought-after cuts.

Ideas such as the consecutive-ones heuristic were usually the fruit of long nights in
cafes, staring at drawings of x∗ vectors for potential flaws. As the TSP project continued,
Vašek became convinced that the entire two-step discovery process could be automated,
at least to some degree. Given the usually dim cafe lighting, the search for flaws was often
limited to local regions of x∗, with the remainder of the vector considered as one super-
vertex that could be visited any even number of times. This shrinking of the vector can
be viewed as linear mapping φ that takes an LP solution into a space of relatively small
dimension. If the region under examination is small enough, then a computer code should
be able to determine if φ(x∗) can be written as a convex combination of mapped tours,
and, if not, produce a cutting plane aT x̄ ≤ b in the mapped space. By substitution, any
mapped inequality gives a cutting plane aT φ(x) ≤ b for x∗. Vašek worked out examples
by hand showing that this general framework could produce strong TSP cuts, and the
method grew into the local cuts procedure ([5], Chapter 11) that is incorporated into our
Concorde code. This in turn has led to the use of local cuts in other problem areas, such
as Steiner-tree computations [3] and mixed-integer programming [52].

Vašek also pursued the idea of turning validity proofs of inequalities into algorithms for
producing cutting planes. The technique is to take apart the proof and build structures
that allow each step to be carried out constructively. An example here is the necklace
heuristic for combs ([5], Chapter 8), modeled after the algebraic proof of comb inequalities
as a Chvátal-Gomory cut. The basic object in this case is a domino, consisting of a pair
(A, B) of subsets of vertices such that A∩B = ∅ and A∪B 6= V . Dominoes are candidates
for teeth in a comb, where A is the set of vertices in the handle and B is the set of vertices
not in the handle. The heuristic works with certain large families of dominoes, selecting
odd sets for the teeth by solving linear systems over GF(2). The linear systems produce
multipliers needed in a Chvátal-Gomory derivation of a comb from subtour constraints.
This method has been pushed further in work by Fleischer and Tardos [53] and Letchford
[67], and it has served as one of the starting points for the study of mod-2 cuts in other
problem areas [12,13,73].



16 David Avis et al.

All of this cutting-plane work and more was carried out with the concrete aim of
solving large instances of the TSP. Starting with the solution of a 3,038-city example
in 1992, improved versions of the Concorde code gradually worked through the entire
TSPLIB [72] challenge set. The last instance, consisting of 85,900 cities from a VLSI
application, fell in 2006. This success is a triumph of Vašek’s ideas, but his legacy goes
way beyond these computations. The mathematical elegance Vašek brought to the TSP
will guide computational work long after new TSP records have come and gone. It is
difficult to predict where TSP research will head in the coming decades, but it is certain
that progress will continue if the community follows Vašek’s lead and bashes on regardless.
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