
Combinatorics and Graph Theory, Final Exam
brief solutions and remarks

General remark. As I mentioned in class. For the problems asking for an
answer instead of a proof, you get full credit as long as the answer is correct.
Other details are just evidences for partial credits.

There are 150 points on the paper. The last problem (20 points) was there
to keep the best students warm. I expect someone can solve it only if s/he
completes all the other problems and has one hour left. So, any score above
100 will be considered as full mark, and scores above 80 are quite good. The
first problems are basics from the textbook and notes. The latter ones are
harder.
The highest score is 118. The high scores are: 100+: 4 students; [90, 100): 1
student; [80, 90): 7 students.

Problem 1. (5 points) How many edges does the graph for n-dimensional
cube Qn have? (Recall that the cube has all subsets of [n] as vertices; there
is an edge between A and B iff they differ by exactly 1 element.)

Solution. There are 2n vertices, each has degree n. So the number of edges
is n2n−1.

Problem 2. (5 points) Show a colouring of the 7 points in the Fano con-
figuration with 3 Y’s, 3 R’s, and 1 B, such that there is no monochromatic
hyperedge.

We omit the solution. There are many ways one can do this.

Problem 3. (10 points) (a). Construct a graphs on [12] with 18 edges, such
that there is at least one edge among any 4 vertices. (b). Briefly justify that
you cannot do it using 17 edges instead of 18.

This is Turán’s theorem in its complemented world. The extremal graph has
3 disjoint K4, 18 egdes.

Problem 4. (10 points) Let G be the graph in Figure (a) with parallel edges.
How many spanning trees does it have?

1



2

34

5

1

a c d

e f g h

b

(a) (b)

Solution. There are 53 = 125 spanning trees in K5. So there are 125 · 4 (tree,
edge) pairs. For any edge (in our picture, 1 − 2), there are 125 · 4/10 = 50
trees that contains that edge, and 75 that does not. Back to our problem,
when 1 − 2 is in the tree, we have two choices. So the number of spanning
trees is 50 · 2 + 75 = 175.
Note. See HW12, Prob 1.
Note. This can also be solved by the matrix-tree theorem. You get 8 points
if you write down the correct 4× 4 matrix.

Problem 5. (10 points) As in Figure (b). 4 people start from a, b, c, d,
respectively. They want to escape from the bottom line to the exits on the
top. There are 4 exit points e, f , g, and h. Everyone needs to find a path
with 4 steps along the lines in the picture (each step goes to a dot in the
picture), and end up with one of the exit points. In addition, the paths of
any two of them cannot share any common point (including the final exit).
In how many ways can they do this?

Solution. View this as a d.a.g. where all the edges going upwards, and all
weights are 1. Use Lindström-Gessel-Viennot lemma, note that all the vertex
disjoint paths must corresponding to the permutation a → e, b → f , c → g,
d → h. The answer is the determinant of the matrix

((6, 4, 1, 0), (4, 6, 4, 1), (1, 4, 6, 4), (0, 1, 4, 6)).

The answer is 105. (When computing the determinant, you don’t need to
worry about the sign when doing row switch and negations, since you know
the final answer is positive.)
Note. See HW12, Prob 2.
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Note. 8 points if you write the correct matrix and did not compute the
determinant correctly.
Note. This can also solved by enumeration, which is slower, and not feasible
if we have more rows.

Problem 6. (10 points) Suppose n > 1 and 1 ≤ r ≤ n. Let A ⊆
(

[n]
r

)

be a
collection of r-sets in [n]. Define its shadow

B =

{

B ∈

(

[n]

r − 1

)

: ∃A ∈ A, B ⊂ A

}

.

Prove the following inequality about their proportion in their own levels:

|A|/

(

n

r

)

≤ |B|/

(

n

r − 1

)

.

View this as a bipartite graph, count the number of edges between them.
Note. See HW11, Prob 1. We also did similar countings in the notes.
Note. We can also show the equality holds iff A is empty or the whole level.
See HW11, Prob 2.
Note. This leeds to another proof for Sperner’s theorem.

Problem 7. (10 points) Suppose A is a set of 2011 integers, and for any
X ∈

(

A

201

)

, one can find a, b ∈ X such that a|b. Prove that there is a set

Y ∈
(

A

11

)

such that a|b or b|a for any a, b ∈ Y .

Proof. Draw a directed graph on A where a → b if a|b. Clearly this is a
d.a.g.. The problem states that the maximum antichain is at most 200. So,
by Dilworth theorem, there are ≤ 200 chains whose union covers all A. By
pigeonhole principle, there is one chain of size at least 11.

Problem 8. (10 points) n people enter an elevator on the 1st floor. Each
person randomly and uniformly selects one of the F upper floors, and pushes
the corresponding button to request a stop at that floor. What is the expected
number of stops the elevator will make on its way up? (The last stop also
counts as one. The elevator stops at a floor if and only if someone requested
it. And let’s say n ≤ 33 for safety reasons.)

Solution. LetXi be the indicator r.v. that the elevator will stop at level i, i.e.,
there is at least one person requested level i. Let X :=

∑

Xi be the number
of stops. We have E(Xi) = 1− (1− 1/F )n. By linearity of expecatation,

E(X) = F (1− (1− 1/F )n).
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Note. It is fine if you express the answer as a reasonable, correct expression,
even if it is not in closed form.
Note. The condition n ≤ 33 was useless. It was there just because such an
elevator would be big enough to hold this class plus the instructor.

Problem 9. (15 points) Let G be a graph whose chromatic number χ(G) = k.
Prove that G has at least k vertices with degrees no less than k − 1.

Proof. Let f be a colouring of the graph with k colours, we claim that,
for any colour c ∈ [k], there must be one vertex with degree ≥ k − 1 and
coloured with c. Otherwise, w.l.o.g., suppose k does not have this property,
let S = {x : f(x) = k}. We find a new colouring f ′, where f ′(y) = f(y)
if y 6∈ S. For x ∈ S, f ′(x) is any colour in [k − 1] that was not used by
the neighbours of x. (Since deg(x) < k − 1, this is always doable.)And it
is easy to check (do it) f ′ is a proper colouring with only k − 1 colours. A
contradiction.

Note. See HW7, Prob 2(d).
Note. In the exam, many students found alternative proofs that are quite
simple. Here is one: Suppose there are at most k−1 such vertices, we colour
them with [k − 1] in any manner, then colour the remaining vertices one by
one, and we always have a good choice in each step.

Problem 10. (15 points) Suppose we have n countries on a sphere of a
planet that resembles a perfect potato. Each country has a connected interior
region. Two countries are adjacent if they share some positive length of
common border. Now they want to choose the national flags. Two adjacent
countries cannot have the same flag. (This is the era before the air-travel,
they don’t care the non-adjacent fellows.)
We know in each country, the citizens voted 4 candidates for their flag. How-
ever, due to the lack of imagination or the prevalence of burglaries, many of
the designs look the same. Prove we can still pick the flags for at least 2n/3
countries so that any two adjacent ones among them have different flags.

Proof. By the four color theorem, the countries can be partitioned into 4
parts, V1, V2, V3, V4, where there are no adjacent counties inside each part.
Now uniformly randomly label each design with 1, 2, 3, or 4. For each
country in Vi, we call it good if there is a flag design labeled as i, and
we pick that design as its flag. In this way, there are no conflicts among
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the good countries. Let Xc be the indicator r.v. that c is a good country.
E(Xc) = 1− (3/4)4 > 2/3. So the expected number of good countries is more
than 2n/3...

Note. See HW6, Prob 5.

Problem 11. (15 points) Let k ≥ 10 and n = ⌊2k/(10k)⌋. A subset X ⊆ [n]
is called a Za if the elements of X form an arithmetic progression of length
k.
(a). Show that for any Za, there are less than 1.25kn other Za’s share some
common points with it.
(b). Prove that we can color each element of [n] with yellow and blue such
that no Za is monochromatic.

Proof. (a). We prove any x ∈ [n] is contained in less than 1.25n Za’s. This
is because a Za passing through x is decided by a pair (d, t), where d is the
common difference of the arithmetic progression, and t is the rank of x in
that progression. Clearly 1 ≤ t ≤ k. The length of the interval [1, n] is n−1,
and the length of the Za is d(k − 1), so d ≤ (n− 1)/(k − 1). Therefore, the
number of such Za’s is at most (n− 1)k/(k − 1) < 1.25n when k ≥ 10.
(b). Randomly uniformly colour each vertex with Y or B. For each Za z,
define Ez to be the event that z is monochromatic. So Pr(Ez) = 21−k.
Define a graph G on the events so that Ez → Ez′ iff z and z′ share some
common points. Use (a) and L.L.L.. Alternatively, apply Example 8.4 in the
notes.

Problem 12. (15 points) Little Moira is attending a party with 100 people
(including herself). Two people are either friends to each other, or not.
(a). Prove that, if Moira has an odd number of friends in the party, then
there exists one person who shares an even number of common friends with
her.
(b). Prove that, no matter what is the friendship relation among the 100
people, there are two people who share an even number of common friends.

Proof. (a). Let N be the neighbours of Moira. Look at the induced subgraoh
G′ = G[N ]. is odd. Since |N | is odd, there must be one point x ∈ N such
that degG′(x) is even. This happens iff x and Moira have an even number of
friends.
(b). If there is a vertex with odd degree, we are done by (a). Otherwise,
suppose for a contradiction we have all the degrees even, but |N(u) ∩N(v)|
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odd for all u 6= v. Let A be the adjacency matrix for G over the binary field.
On one hand, all the columns sum to 0, so r(A) < n. On the other hand,
AAT = J − I has full rank when n = 100 is even. A contradiction.

Note. My friend Moira is the only female TopCoder finalist in history. When
I showed her this problem, she came up with a proof that does not use linear
algebra. (Several students also found similar proofs in the exam.)

Proof. (from Moira herself) (a) stays the same. For (b), just consider all
the edges between N(x) and V − N − {x}. Counting the edges from the
V − N − {x} side will give us an odd number, while from the N(x) side an
even number. (You can easily fill in the details.)

Problem 13. (20 points) Suppose G is a graph on [n] with possible parallel
edges. And there are k edge disjoint spanning trees in G: T1, T2, ..., Tk

such that any edge belongs to at most one Ti. Prove that G has at least kn−1

different spanning trees.

Proof. We may throw away additional edges, only keep the k trees, and
colour the edge of Ti with colour i. Thus we have a coloured graph with k
colours, with n− 1 edges of each colour.
Prove by induction on k. The base case k = 1 is trivial. Let Ek be the set of
n − 1 edges of Tk. We claim that for any E ′ ∈

(

Ek

s

)

, there are (k − 1)n−1−s

at least spanning trees T such that E(T ) ∩ Ek is exactly E ′. Therefore the
number of distinct spanning trees is at least

n−1
∑

i=0

(

n− 1

s

)

(k − 1)n−1−s = (1 + (k − 1))n−1 = kn−1.

To prove the claim, consider the “reduced” graph R where each vertex is a
connected component in (V,E ′), and draw an edge with colour i < k between
two components V1 and V2 if there was any edge of colour i between them
in G. Now check that the reduced graph has spanning trees for each colour
i < k, so, by induction, it has (k − 1)n−1−s different spanning trees. Each of
these trees corresponds to n− 1− s edges in the original graph, to which we
can add back E ′ and form a spanning tree of the original graph.

Note. As far as I remember, this problem (or at least the k = 2 version) was
created by Józef Beck’s in the classroom when he was teaching graph theory.
I was awarded some dollars for first finding a proof (basically like above).
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Think about that now, it was my bad that I forgot to offer money for nice
solutions in the semester.
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