
Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Supporting User Programs
Phase 2 of Nachos Project

Xiangru Chen

ACM Honored Class 06
Shanghai Jiao Tong University

October 28, 2010

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Outline

1 Knowledge

2 Tasks

3 Selected Topics

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Outline

1 Knowledge

2 Tasks

3 Selected Topics

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Important Classes

nachos.machine.Processor

• simulator of a MIPS CPU

• supports a subset of R3000 instruction set

• includes the “main memory”

nachos.machine.FileSystem and
nachos.machine.OpenFile

• basic interfaces for file system

• Abstract Factory pattern

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Important Classes

nachos.machine.Processor

• simulator of a MIPS CPU

• supports a subset of R3000 instruction set

• includes the “main memory”

nachos.machine.FileSystem and
nachos.machine.OpenFile

• basic interfaces for file system

• Abstract Factory pattern

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Important Classes

nachos.userprog.UserKernel

• extends ThreadedKernel

• a kernel that support multiple user processes

• contains global algorithm and data for the OS

nachos.userprog.UThread

• extends KThread

• can execute user code inside a user process

nachos.userprog.UserProcess

• contains local algorithm and data for a process
• page tables, file tables, etc.

• much work need to do here

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Important Classes

nachos.userprog.UserKernel

• extends ThreadedKernel

• a kernel that support multiple user processes

• contains global algorithm and data for the OS

nachos.userprog.UThread

• extends KThread

• can execute user code inside a user process

nachos.userprog.UserProcess

• contains local algorithm and data for a process
• page tables, file tables, etc.

• much work need to do here

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Important Classes

nachos.userprog.UserKernel

• extends ThreadedKernel

• a kernel that support multiple user processes

• contains global algorithm and data for the OS

nachos.userprog.UThread

• extends KThread

• can execute user code inside a user process

nachos.userprog.UserProcess

• contains local algorithm and data for a process
• page tables, file tables, etc.

• much work need to do here

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Code Overview

Booting

• a kernel thread does the initialization

• then calls UserProcess.execute(shellProg, args) to
start the shell program

Launching a Process

• load binary code from file

• run instructions on Processor

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Code Overview

Booting

• a kernel thread does the initialization

• then calls UserProcess.execute(shellProg, args) to
start the shell program

Launching a Process

• load binary code from file

• run instructions on Processor

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Code Overview

Address Translation

• use page table in phase 2

• page table is an array of
nachos.machine.TranslationEntry

• call Processor.setPageTable() before process runs

Context Switch

• UThread.saveState() is called before context switches

• UThread.restoreState() is called after context
switches

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Code Overview

Address Translation

• use page table in phase 2

• page table is an array of
nachos.machine.TranslationEntry

• call Processor.setPageTable() before process runs

Context Switch

• UThread.saveState() is called before context switches

• UThread.restoreState() is called after context
switches

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Code Overview

When exception occurs

• exception handler in UserKernel is invoked

MIPSException.handle()

Processor.exceptionHandler.run()

UserKernel.exceptionHandler()

UserProcess.handleException(cause)

You are implementing this

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Outline

1 Knowledge

2 Tasks

3 Selected Topics

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Task 1

Implement syscalls for file management.

• creat, open, read, write, close, unlink

• see syscall.h for details

Make use of nachos.machine.StubFileSystem .

• it’s a wrapper of your real file system

• through StubFileSystem , you can access files in the
“test” directory by the OpenFile interface

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Task 2

Implement simple paging using page table.
Modify UserProcess.readVirtualMemory() and
UserProcess.writeVirtualMemory() .

• they are widely used & important method

• they are used to copy data between kernel and user’s
virtual address space

• better to make their code independent with address
translation

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Task 3

Implement syscalls for process management.

• exec, join, exit

• see syscall.h for details

Bullet-proof all the syscalls.

• i.e. there should be nothing a user program can do to
crash the operating system

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Task 3

Take join as an example:
handleJoin(int pid, int addrStatus)

1 check whether pid is a child of currentProcess

2 call join on the child’s KThread object

3 check whether the child exited normally

4 get the return value of the child

5 write the return value to memory address addrStatus

6 do some cleanings

7 return a value

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Task 4

Implement a lottery scheduler.

• if you did make a good design before implementing
PriorityScheduler , this will be very easy

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Outline

1 Knowledge

2 Tasks

3 Selected Topics

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Consoles

nachos.machine

interface

SerialConsole

+ setIntHandlers(r , s : Runnable) : void

+ readByte() : int

+ writeByte(value : int) : void

StandardConsole

GraphicalConsole

nachos.userprog.SynchConsole

+ readByte(block : boolean) : int

+ writeByte(value : int) : void

+ openForReading() : OpenFile

+ openForWriting() : OpenFile

• Make use of openForReading() and
openForWriting() to provide standard input/output to
user program.

• Consider whether your readings need to be blocked or not.

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Consoles

nachos.machine

interface

SerialConsole

+ setIntHandlers(r , s : Runnable) : void

+ readByte() : int

+ writeByte(value : int) : void

StandardConsole

GraphicalConsole

nachos.userprog.SynchConsole

+ readByte(block : boolean) : int

+ writeByte(value : int) : void

+ openForReading() : OpenFile

+ openForWriting() : OpenFile

• Make use of openForReading() and
openForWriting() to provide standard input/output to
user program.

• Consider whether your readings need to be blocked or not.

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Consoles

A difference between nachos console and your real console:

• by default, your real console program will buffer your input
until a line break

• for *nix users who want to simulate more accurately:

1 #!/ b i n / sh
2
3 onexit () {

4 stty $OLDSTTYSTATE

5 }

6
7 OLDSTTYSTATE=‘stty -g‘

8 trap onexit 0

9 stty -icanon min 1 -echo

10 java -cp bin nachos.machine.Machine $*

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Debugging

Use debug flags properly will help a lot in debugging.

• invoke nachos with ’-d <debug flags>’

• see nachos.machine.Lib.debug()

Use different random seeds may help you find bugs.

• invoke nachos with ’-s <seed>’

• the default seed is 0

• use various random seeds to test your system

• without human intervention, the same random seed will
lead to the same result

• see nachos.machine.Lib.random()

Use GraphicalConsole to seperate standard input/output
from debug output.

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Debugging

Use debug flags properly will help a lot in debugging.

• invoke nachos with ’-d <debug flags>’

• see nachos.machine.Lib.debug()

Use different random seeds may help you find bugs.

• invoke nachos with ’-s <seed>’

• the default seed is 0

• use various random seeds to test your system

• without human intervention, the same random seed will
lead to the same result

• see nachos.machine.Lib.random()

Use GraphicalConsole to seperate standard input/output
from debug output.

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Debugging

Use debug flags properly will help a lot in debugging.

• invoke nachos with ’-d <debug flags>’

• see nachos.machine.Lib.debug()

Use different random seeds may help you find bugs.

• invoke nachos with ’-s <seed>’

• the default seed is 0

• use various random seeds to test your system

• without human intervention, the same random seed will
lead to the same result

• see nachos.machine.Lib.random()

Use GraphicalConsole to seperate standard input/output
from debug output.

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Cross Compiling
First, edit your Makefile to make it work properly
• tell it where is your cross compiler

• i.e. ARCHDIR= "../mips-x86.linux-xgcc"

sh.c

sh.o

mips-gcc

sh.coff

mips-ld

stdio.h stdio.c stdlib.h ...

stdio.o stdlib.o ...

mips-gcc

libnachos.a

mips-ar

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Cross Compiling
First, edit your Makefile to make it work properly
• tell it where is your cross compiler

• i.e. ARCHDIR= "../mips-x86.linux-xgcc"

sh.c

sh.o

mips-gcc

sh.coff

mips-ld

stdio.h stdio.c stdlib.h ...

stdio.o stdlib.o ...

mips-gcc

libnachos.a

mips-ar

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Integrating with Tiger Compiler
Need libraries to support tiger programs.
• remember the runtime.s in your tiger project?

Approach 1:

queens.tig

queens.s

tigerc

queens.o

mips-as

queens.coff

mips-ld

libtiger.s

libtiger.o

mips-as

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Integrating with Tiger Compiler
Need libraries to support tiger programs.
• remember the runtime.s in your tiger project?

Approach 1:

queens.tig

queens.s

tigerc

queens.o

mips-as

queens.coff

mips-ld

libtiger.s

libtiger.o

mips-as

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Integrating with Tiger Compiler
Approach 2:

queens.tig

queens.s

tigerc

queens.o

mips-as

queens.coff

mips-ld

libtiger.c stdio.h stdlib.h ...

libtiger.o

mips-gcc

libnachos.a

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A

Integrating with Tiger Compiler

Tiger programs need dynamic memory
allocation.

• we can use $gp to allocate memory

• give $gp a initial value in
UserProcess.initRegisters()

• write memory allocation programs in
your library, for example:

• move $2, $28
• addu $28, $4
• Think: will this code work?

$sp

↓

stack

heap

↑
$gp

code &

static data

Supporting
User

Programs

Xiangru Chen

Outline

Knowledge

Tasks

Selected
Topics

Q&A Q & A

	Knowledge
	Tasks
	Selected Topics

