
Overview
Knowledge

Tasks
Appendix

Supporting User Program

Chunzhi Su

ACM Honored Class
Shanghai Jiao Tong University

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

User Code vs Kernel Code

In Nachos (not in real world)

All codes written in your java project are kernel codes (except
the “virtual machine”). They are executed by JVM.

User programs are written in assembly codes, executed by the
“CPU” : a MIPS simulator written in JAVA.

So kernel codes are not executed by “CPU”!!
This is one reason why Nachos is only a toy, not a real OS.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

Why we need this phase

Although user codes are mainly executed(simulated) by “CPU”,
they also need supports from OS

System Call

Handle CPU Exception

Virtual-to-physical Address Translation

FileSystem

Goal of this phase is to implement these supports for user program.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

What you have ...

You have got a “virtual machine”.

nachos.machine.Processor

It is the “CPU”.
It includes a “main memory”.
It supports a subset of R3000 instruction set.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

What you have ...

You have also got a naive filesystem available.

nachos.machine.FileSystem & nachos.machine.OpenFile

Interface of filesystem and file.
Filesystem creates OpenFile.

nachos.machine.StubFileSystem

A basic implementation of filesystem and file.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

What you deal with ...

nachos.userprog.UserKernel

Extends ThreadedKernel.
A kernel that support multiple user processes.
Contains global algorithm and data for the OS.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

What you deal with ...

nachos.userprog.Uthread

Extends Kthread.
Executes user codes inside a user process

call “CPU” to run user program.
context switch, etc.

nachos.userprog.UserProcess

Contains local algorithm and data for a process, such as page
table, file descriptors.
much work to do here.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

How things work ...

Booting

Kernel does the initialization.
Call UserProcess.execute(shellProg, args) to start shell.

Launching a user process (UserProcess.execute())

Load binary code from file.
Create and initialize a UThread.
UThread calls “CPU” to simulate instructions.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

How things work ...

Address Translation

Page table is an array of nachos.machine.TranslationEntry.
In this phase, “CPU” supports a “hard-wired” page table.
Call Processor.setPageTable() before process runs.
In later phases, “CPU” wont support this any longer.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

How things work ...

Handle Exception

When “CPU” throws exception, exception handler in
UserKernel is invoked.
Kernel then calls UserProcess.handleException(cause).
Write codes to handle exceptions in
UserProcess.handleException(cause).

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

Task 1

Implement syscalls for file management.

creat, open, read, write, close, unlink.

See syscall.h for details.

You are not asked to implement a filesystem
In this phase, use StubFileSystem directly.
For each syscall, invoke corresponding method of filesystem
interface.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

Task 2

Implement simple paging using page table.

UserProcess.readVirtualMemory() &
UserProcess.writeVirtualMemory()

They are used to copy data between kernel and user’s virtual
address space

Kernel space : JVM memory.
User space : “Memory” in nachos.machine.Processor.

Remember: in Nachos, user code and kernel code dont share
CPU and memory.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

Task 3

Implement syscalls for process management.

exec, join, exit.

Again, see syscall.h for details.

Bullet-proof all the syscalls
There should be nothing a user program can do to crash your
OS.
Even if user program passes wrong args in syscall.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

Task 4

Implement a lottery scheduler.

If you made a good design before implementing
PriorityScheduler, this will be very easy.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

Console

OpenForReading()

Returns an OpenFile.
Standard input for user program.

OpenForWriting()

Returns an OpenFile.
Standard output for user program.

Chunzhi Su Supporting User Program



Overview
Knowledge

Tasks
Appendix

Thank you. Q&A

Chunzhi Su Supporting User Program


	Overview
	Knowledge
	Tasks
	Appendix

