
11

Memory: Segmentation
Instructor: Hengming Zou, Ph.D.

In Pursuit of Absolute Simplicity 求于至简，归于永恒



22

Content

 Logical segmentation
 Segmentation with paging
 Case study: Multics



33

(Logical) Segmentation

 Segmentation divides both physical and virtual memory into segments
– i.e. regions of contiguous memory space

 Each segment is dedicated to one or more sections of a process
– i.e. logical unit of separation, such as data, code, stack, etc.

 The pure segmentation use entire process



44

Segmentation

Allows each table to grow or shrink, independently



55

Segmentation

 Let’s generalize this to allow multiple segments
– described by a table of base & bound pairs

Segment # Base Bound Description
0 4000 700 Code segment
1 0 500 Data segment
2 Unused
3 2000 1000 Stack segment



66

Segmentation

data

stack

code

code

data

stack

Physical 
memory

Virtual memory
segment 1

Virtual memory
segment 3

Virtual memory
segment 0

6ff
0

4ff
0

fff
0

46ff
4000

2fff
2000

4ff
0



77

Segmentation

 Note that not all virtual addresses are valid
– e.g. no valid data in segment 2, 

→i.e. the process has no such specific segment
– no valid data in segment 1 above 4ff

 Valid means the region is part of the process’s virtual address space
– Could be multiple set of virtual address spaces

 Invalid means this virtual address is illegal for the process to access
– Accesses to invalid address will cause OS to take corrective measures
– usually a core dump



88

Segmentation

 Protection: 
– different segments can have different protection
– e.g. code can be read-only (allows inst. fetch, load)
– e.g. data is read/write (allows fetch, load, store)

 In contrast, pure segmentation gives same protection to entire space



99

Segmentation

 In segmentation, a virtual address takes the form:
– (virtual segment #, offset)

 Could specify virtual segment # via 
– The high bits of the address, 
– Or a special register, 
– Or implicit to the instruction opcode



1010

Implementation of Segmentation



1111

Segmentation

 What must be changed on a context switch?
– Segmentation table or descriptor segment



1212

Pros and Cons of Segmentation

 + easy to share whole segments without sharing entire address space
 + avoid collision within virtual address space
 + works well for sparse address spaces

– with big gaps of invalid areas

 - complex memory allocation
 - external fragmentation



1313

Segmentation

 How to make memory allocation easy and 
– But still keeps the advantages of segmentation?

 SEGMENTATION WITH PAGING!
– Divide program into logical segmentations
– Use paging within each segment



1414

Segmentation with Paging



1515

Segmentation with Paging

 Descriptor segment points to page tables
 Page tables points to physical frames
 MULTICS use this method



1616

Compare Paging and Segmentation

Consideration Paging Segmentation

Need programmer aware that this 
technique is being used

No Yes

How many linear address spaces? 1 Many

Can total address space exceed the 
size of physical memory

Yes Yes

Can procedures and data be 
distinguished & separately protected

No Yes

Can tables size fluctuate easily? No Yes

Sharing of procedures between users? No Yes

Why was this technique invented To get a large linear address 
space without buying more 
memory

Allow programs & data to 
be broken up into logically 
independent spaces and to 
aid sharing & protection



SP Case Study



1818

SP Example: MULTICS

 A 34-bit MULTICS virtual address

Segment number

Address within
the segment

18

Page
number

Offset within
the page

6 10



1919

SP Example: MULTICS

Segment number

MULTICS virtual space

18

Page
number

Offset within
the page

6 10

Descriptor Page frame Word

Segment
number

Page
table

Page

Page
number

Descriptor
segment

offset



2020

SP Example: MULTICS TLB



2121

SP Example: MULTICS

 Do not show this slide
 Simplified version of the MULTICS TLB
 Existence of 2 page sizes makes actual TLB more complicated



2222

SP Example: Pentium

 Pentium virtual memory contains two tables:
 Global Descriptor Table:

– Describes system segments, including OS

 Local Descriptor Table:
– Describes segments local to each program



2323

SP Example: Pentium

 Pentium selector contains a bit to indicate if the segment is local or 
global

LDT or GDT entry numbers

1 213Bits

0 = GDT/1 = LDT Privilege level (0-3)

A Pentium selector



2424

SP Example: Pentium

Pentium code segment descriptor (Data segments differ slightly)



2525

SP Example: Pentium

Conversion of a (selector, offset) pair to a linear address



2626

Pentium Address Mapping



2727

Protection on the Pentium

Level



Computer Changes Life


