Memory: Segmentation

Instructor: Hengming Zou, Ph.D.
- o N J

Kingston i ==

w i o ie

KT Z M,

)3 FK(E

Content

2 Logical segmentation
2 Segmentation with paging
2 Case study: Multics

* X x
x ¥
x *

2 Segmentation divides both physical and virtual memory into segments

(Logical) Segmentation

— 1.e. regions of contiguous memory space
2 Each segment 1s dedicated to one or more sections of a process
— 1.e. logical unit of separation, such as data, code, stack, etc.

2 The pure segmentation use entire process

* X
Segmentation x ¥
* Ok
20K
16K 16K
12K 12K 12K 12K
Symbol
table
8K 8K 8K Parse 8K
tree
Source Call
text stack
4K 4K 4K 4K
Constants
oK 0K oK oK 0K
Segment Segment Segment Segment Segment
0 1 2 3 4

Allows each table to grow or shrink, independently

Segmentation

2 Let’s generalize this to allow multiple segments

— described by a table of base & bound pairs

Segment # Base Bound Description

0 4000 700 Code segment
1 0 500 Data segment

2 Unused

3 2000 1000 Stack segment

*

b S
Segmentation x ¥
x Ok
Virtual memory
segment 3 Physical
fff
stack 46¢ Moty
0 code
000+
Virtual memory
segment 1
Aff 21
data stack
0 20
Virtual memory
segment 0
off
41
0 code data

Segmentation

2 Note that not all virtual addresses are valid
— e.g. no valid data in segment 2,
—1.e. the process has no such specific segment
— no valid data in segment 1 above 4{f
2 Valid means the region is part of the process’s virtual address space
— Could be multiple set of virtual address spaces
2 Invalid means this virtual address 1s illegal for the process to access
— Accesses to invalid address will cause OS to take corrective measures

— usually a core dump

»*
Segmentation x

2 Protection:
— different segments can have different protection
— e.g. code can be read-only (allows inst. fetch, load)

— e.g. data is read/write (allows fetch, load, store)

2 In contrast, pure segmentation gives same protection to entire space

Segmentation

2 In segmentation, a virtual address takes the form:
— (virtual segment #, offset)

2 Could specify virtual segment # via
— The high bits of the address,
— Or a special register,

— Or mmplicit to the instruction opcode

Implementation of Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

S

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

557

Segment 1
(8K)

Segment 2

Segment 3
(8K)

Segment 5
4K

1977

(5K)
7877

Segment 2
5

Segment 6
(4K)

Segment 0

Segment 7
(5K)

(5K)

Segment 2
(5K)

Segment 0

Segment 7
(5K)

%7

(4K)

Segment 0

(b)

Segment 7
(5K)

(4K)

Segment 0

(c)

(4K)

(d)

Z ///
(‘IOK)/

Segment 2
(5K)

Segment 7
(5K)

Segment 0
(4K)

(e)

10

Segmentation

2 What must be changed on a context switch?

— Segmentation table or descriptor segment

11

* * x
Pros and Cons of Segmentation X, *)1»

© + easy to share whole segments without sharing entire address space

2 + avoid collision within virtual address space

2 + works well for sparse address spaces

— with big gaps of invalid areas
2 - complex memory allocation

2 - external fragmentation

12

Segmentation

2 How to make memory allocation easy and

— But still keeps the advantages of segmentation?

2 SEGMENTATION WITH PAGING!

— Divide program into logical segmentations

— Use paging within each segment

13

b A
Segmentation with Paging x X
*x
~—36 bits —— T T
| | Page 2 entry
I I Page 1 entry 18 9 111 3 3
Segment 6 descriptor Page 0 entry Main memory address Segment length Z
of the page table (in pages) %
Segment 5 descriptor Page table for segment 3 = / T
. Page size:
Segment 4 descriptor 0 =g1 S
Segment 3 descriptor) | 1= 64 words
. > > 0=segmentis paged __|
Segment cideselptof 1 = segment is not paged
S t 1 descript Page 2 ent
Sgmert T deserip™or age oy Miscellaneous bits
Segment 0 descriptor Page 1 entry
Protection bits
Descriptor segment Page 0 entry

Page table for segment 1

14

Segmentation with Paging

2 Descriptor segment points to page tables
2 Page tables points to physical frames
2 MULTICS use this method

15

b S
Compare Paging and Segmentation ¥* *’*
Consideration Paging Segmentation
Need programmer aware that this No Yes
technique is being used
How many linear address spaces? 1 Many
Can total address space exceed the Yes Yes
size of physical memory
Can procedures and data be No Yes
distinguished & separately protected
Can tables size fluctuate easily? No Yes
Sharing of procedures between users? | No Yes
Why was this technique invented To get a large linear address | Allow programs & data to
space without buying more | be broken up into logically
memory independent spaces and to
aid sharing & protection

16

SP Case Study

»* X
SP Example: MULTICS 4* *)1»
2 A 34-bit MULTICS virtual address

Address within
the segment
AN
- I
Segment number Page | Offset within
number the page

18

6

10

18

b S
SP Example: MULTICS 4* *)1»
MULTICS virtual space
Segment number Page Offset within
number the page
18 6 10
Descriptor Page frame Lot A
Segment Page \ offset
number
Descriptor Page Page
segment table

19

* X
SP Example: MULTICS TLB 4* *)1»
Comparison Is this
entry
s — used?
Segment Virtual Page
number page frame Protection Age l,
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1

20

SP Example: MULTICS

* X x
x ¥

*x Ok

2 Do not show this slide
2 Simplified version of the MULTICS TLB

2 Existence of 2 page sizes makes actual TLB more complicated

21

SP Example: Pentium

2 Pentium virtual memory contains two tables:

2 Global Descriptor Table:
— Describes system segments, including OS
2 Local Descriptor Table:

— Describes segments local to each program

22

»* * x
SP Example: Pentium 4* *)1»

2 Pentium selector contains a bit to indicate if the segment is local or
global

Bits 13 1 2

LDT or GDT entry numbers

1A
/ \

0=GDT/1=LDT Privilege level (0-3)

A Pentium selector

23

* X x
x ¥

SP Example: Pentium
*x

| 0: Segment is absent from memory
L 1. Segment is present in memory
Privilege level (0-3)

| 0: System

| 1: Application

Segment type and protection

0: 16-Bit segment [
1: 32-Bit segment J

0: Liis in bytes
1: Liis in pages |

1 T v 1)\

7/ B
Base 24-31 Glpolo / Limit olppL|s| Type Base 16-23 4
] 16-19
7
Base 0-15 Limit 0-15 0
- 32 Bits . Relative
address

Pentium code segment descriptor (Data segments differ slightly)

= =
A
/ Sl
5

* x
SP Example: Pentium x X
* Sk
Selector Offset
Descriptor
Base address +
E——— Limit
Other fields
Y

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address

25

b S
Pentium Address Mapping x

Linear address

Bits 10 10 12
Dir Page Offset
(@)
Page directory Page table Page frame
selected S
A
1024
Entries T
. T Offset
Dir
Page
| A |
Directory entry Page table
points to entry points

page table to word

Protection on the Pentium

_\sef programs

Level

Typical uses of

N\
Z the levels

27

