Memory: Segmentation

Instructor: Hengming Zou, Ph.D.
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2 Logical segmentation
2 Segmentation with paging
2 Case study: Multics
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2 Segmentation divides both physical and virtual memory into segments

(Logical) Segmentation

— 1.e. regions of contiguous memory space
2 Each segment 1s dedicated to one or more sections of a process
— 1.e. logical unit of separation, such as data, code, stack, etc.

2 The pure segmentation use entire process
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* Ok
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Allows each table to grow or shrink, independently




Segmentation

2 Let’s generalize this to allow multiple segments

— described by a table of base & bound pairs

Segment # Base Bound Description

0 4000 700 Code segment
1 0 500 Data segment

2 Unused

3 2000 1000 Stack segment
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x Ok
Virtual memory
segment 3 Physical
fff
stack 46¢ Moty
0 code
000+
Virtual memory
segment 1
Aff 21
data stack
0 20
Virtual memory
segment 0
off
41
0 code data




Segmentation

2 Note that not all virtual addresses are valid
— e.g. no valid data in segment 2,
—1.e. the process has no such specific segment
— no valid data in segment 1 above 4{f
2 Valid means the region is part of the process’s virtual address space
— Could be multiple set of virtual address spaces
2 Invalid means this virtual address 1s illegal for the process to access
— Accesses to invalid address will cause OS to take corrective measures

— usually a core dump
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2 Protection:
— different segments can have different protection
— e.g. code can be read-only (allows inst. fetch, load)

— e.g. data is read/write (allows fetch, load, store)

2 In contrast, pure segmentation gives same protection to entire space




Segmentation

2 In segmentation, a virtual address takes the form:
— (virtual segment #, offset)

2 Could specify virtual segment # via
— The high bits of the address,
— Or a special register,

— Or mmplicit to the instruction opcode




Implementation of Segmentation
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Segmentation

2 What must be changed on a context switch?

— Segmentation table or descriptor segment
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Pros and Cons of Segmentation X, *)1»

© + easy to share whole segments without sharing entire address space

2 + avoid collision within virtual address space

2 + works well for sparse address spaces

— with big gaps of invalid areas
2 - complex memory allocation

2 - external fragmentation
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Segmentation

2 How to make memory allocation easy and

— But still keeps the advantages of segmentation?

2 SEGMENTATION WITH PAGING!

— Divide program into logical segmentations

— Use paging within each segment

13
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~—36 bits —— T T
| | Page 2 entry
I I Page 1 entry 18 9 111 3 3
Segment 6 descriptor Page 0 entry Main memory address Segment length Z
of the page table (in pages) %
Segment 5 descriptor Page table for segment 3 = / T
. Page size:
Segment 4 descriptor 0 =g1 S
Segment 3 descriptor ) | 1= 64 words
. > > 0=segmentis paged __|
Segment cideselptof 1 = segment is not paged
S t 1 descript Page 2 ent
Sgmert T deserip™or age oy Miscellaneous bits
Segment 0 descriptor Page 1 entry
Protection bits
Descriptor segment Page 0 entry

Page table for segment 1
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Segmentation with Paging

2 Descriptor segment points to page tables
2 Page tables points to physical frames
2 MULTICS use this method
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Compare Paging and Segmentation ¥* *’*
Consideration Paging Segmentation
Need programmer aware that this No Yes
technique is being used
How many linear address spaces? 1 Many
Can total address space exceed the Yes Yes
size of physical memory
Can procedures and data be No Yes
distinguished & separately protected
Can tables size fluctuate easily? No Yes
Sharing of procedures between users? | No Yes
Why was this technique invented To get a large linear address | Allow programs & data to
space without buying more | be broken up into logically
memory independent spaces and to
aid sharing & protection
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SP Example: MULTICS 4* *)1»
2 A 34-bit MULTICS virtual address

Address within
the segment
AN
- I
Segment number Page | Offset within
number the page

18

6

10
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SP Example: MULTICS 4* *)1»
MULTICS virtual space
Segment number Page Offset within
number the page
18 6 10
Descriptor Page frame Lot A
Segment Page \ offset
number
Descriptor Page Page
segment table
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SP Example: MULTICS TLB 4* *)1»
Comparison Is this
entry
s — used?
Segment Virtual Page
number page frame Protection Age l,
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
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SP Example: MULTICS

* X x
x ¥

*x Ok

2 Do not show this slide
2 Simplified version of the MULTICS TLB

2 Existence of 2 page sizes makes actual TLB more complicated
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SP Example: Pentium

2 Pentium virtual memory contains two tables:

2 Global Descriptor Table:
— Describes system segments, including OS
2 Local Descriptor Table:

— Describes segments local to each program
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SP Example: Pentium 4* *)1»

2 Pentium selector contains a bit to indicate if the segment is local or
global

Bits 13 1 2

LDT or GDT entry numbers

1A
/ \

0=GDT/1=LDT Privilege level (0-3)

A Pentium selector
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SP Example: Pentium
*x

| 0: Segment is absent from memory
L 1. Segment is present in memory
Privilege level (0-3)

| 0: System

| 1: Application

Segment type and protection

0: 16-Bit segment [
1: 32-Bit segment J

0: Liis in bytes
1: Liis in pages |

1 T v 1 )\

7/ B
Base 24-31 Glpolo / Limit olppL|s| Type Base 16-23 4
] 16-19
7
Base 0-15 Limit 0-15 0
- 32 Bits . Relative
address

Pentium code segment descriptor (Data segments differ slightly)

= =
A
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* Sk
Selector Offset
Descriptor
Base address +
E——— Limit
Other fields
Y

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address
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Linear address

Bits 10 10 12
Dir Page Offset
(@)
Page directory Page table Page frame
selected S
A
1024
Entries T
. T Offset
Dir
Page
| A |
Directory entry Page table
points to entry points

page table to word




Protection on the Pentium

\_\sef programs

Level

Typical uses of

N\
Z the levels
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