* X
Memory: Paging System X

Sie | el
Kingston m ——

a8 et i L R ta, _=aris . 27> XS s 3 e

Content

2 Space Management
2 Design issues for paging systems

2 Policy and mechanism

Space Management

2 Need keep track of memory used and available
2 Two options to keep track of memory space
2 Bit map approach

— Divide memory into allocation units

— Use one bit to mark if the unit 1s allocated or not

2 Linked list approach
— Divide memory into allocation units

— Use a linked list to indicate allocated and available units in chunks

Space Management

Memory allocation

7/ AR/ RN/ i

72

11111111
11001111 CH182

—1—>| P|20| 6 | ——>| P |26]| 3 > H |29 3 | X
11111000 AR YA }
A A, Hole Starts Length Process
T iy at18 2

c) Linked list representation

»*
Space Management with Linked Lists x

2 What happens when units are released?

2 May need to collapse linked list appropriately

Before X terminates

A X %

W

X

B

W

X

7

becomes

becomes

becomes

becomes

After X terminates

AV s

r V72

7 B

[/

Design Issues for Paging Systems

2 Thrashing

2 Local versus Global Allocation Policies
> Page size

2 OS Involvement with Paging

2 Page fault handling

»*
Thrashing X

2 What would happen with lots of big processes,
— all actively using lots of virtual memory?
— Frequent page faults

2 What happens when a work set is big than the available memory frames?
— Constant page fault to bring pages in and out

— This is called “thrashing”

Thrashing

2 Average access time =
— hit rate * hit time + miss rate * miss time

— e.g. hit time = .0001 ms, miss time = 10 ms
2 100% hit rate:

— average access time 1s .0001 ms

2 99% hit rate:
2 90% hit rate:

Solutions to Thrashing

2 If a single process is actively using more pages than can fit
— there’s no solution
— that process (at least) will thrash
2 If cause 1s the combination of several processes
— Can alleviate by swapping all pages of a process out to disk
— That process won't run at all
—but other processes will run much faster

— OQOverall performance improves

2 But be careful of Belady's Anomaly

* X
Belady's Anomaly x ¥
*x Ok
All pages frames initially empty
o1 2 3 01 4 01 2 3 4
Youngest page O|1(2|3(0|1]|4|4]|4([2]|3]3
ol112(3|o0|1(111]14|2]2
Oldest page O11(2|3(0]0|0|1]|4]|4
F PP ERERERE P P 9 Page faults
(@)
o 12 3 01 4 01 2 3 4
Youngest page 011]12(3|3|3[4|0]|1[2]|3]4
ol112(2|12|3(4|10]1[2]3
Oldest page oj1|11|(1]12|13(4]|0|1]2
oOjojof1|12|3|14]0]1
P P P P P P P P P P 10Page faults

10

Local versus Global Allocation

2 When evict a page, do we only look at
— pages of the same process for possible eviction
—Local allocation policy
— Or do we look at the whole memory for victim?

—Global allocation policy

11

Local versus Global Allocation

2 Global replacement:
— Consider all pages equally for eviction need
2 Local replacement:

— Only consider pages belonging to the process needing a new page when
looking for a page to evict

— But how to set the # of pages assigned to a process?

2 Generally, global has lower overall miss rate

— but local 1s more “fair”

12

Local versus Global Allocation

OO W-=00MNO®O®~OWO P~

Local
policy

(b)

Global
policy BT

13

Local versus Global Allocation

2 In global allocation policy, use PFF to manage the allocation

— PFF = page fault frequency
> If PFF 1s large, allocate more memory frames
2 Otherwise, decrease the number of frames

2 (Goal 1s to maintain an acceptable PFF

14

*
Local versus Global Allocation ¥

Page faults/sec

Number of page frames assigned

Page fault rate as a function of # of page frames assigned

15

Page Size

2 What happens if page size is small?
2 What happens if page size 1s really big?

2 Could we use a large page size but let other processes use the leftover
space in the page?
2 Page size 1s typically a compromise
— e.2.4KB or § KB

2 What happens to paging if virtual address space is sparse?
— most of the address space is invalid,

— with scattered valid regions

16

Small Page Size

2 Advantages
— less internal fragmentation
— better fit for various data structures, code sections
— less unused program in memory

2 Disadvantages

— programs need many pages, larger page tables

2 Therefore, to decide a good page size, one needs to balance page table
size and internal fragmentation

17

»* * x
Page Size x X
x Ok
2 Overhead due to PT and internal fragmentation can be calculate as:
— (sXe)/ptp/2- Internal fragmentation
2 S =average process size in bytes Page table space

2 p =page size in bytes
< € =page entry

2 Overhead 1s minimized when:
— P=sqrt(2 XsXe)

18

Fixed vs. Variable Size Partitions

2 Fixed size (pages) must be compromise
— too small a size leads to a large translation table

— too large a size leads to internal fragmentation

2 Variable size (segments) can adapt to the need
— but it’s hard to pack these variable size partitions into physical memory

— leading to external fragmentation

19

Load Control

2 Despite good designs, system may still thrash
2 When PFF algorithm indicates:

— S0me processes need more memory

— but no processes need less

2 Solution :

— Reduce # of processes competing for memory
— swap 1 or more to disk, divide up pages they held

— reconsider degree of multiprogramming

20

Separate Instruction and Data Spaces

2 With combined instruction and data space,

— programmers have to fit everything into 1 space
2 By separating instruction and data space, we:

— Allows programmers more freedom

— Facility sharing of program text (code)

21

Separate Instruction and Data Spaces

* X x
x ¥

*x Ok

Data -«

Program <

032

Single address

space

Program

932

| space

D space

X

\/
KR

\N/\/\/\/
0

} Unused page

-

» Data

22

OS Involvement with Paging

2 Four times when OS involved with paging
2 Process creation
— determine program size, create page table
2 Process execution
— MMU reset for new process, TLB flushed
2 Page fault time
— determine the virtual address that causes the fault
— swap target page out, needed page in
2 Process termination time

release page table, pages

23

Page Fault Handling

O O O O 0O

Hardware traps to kernel, general registers saved
OS determines which virtual page needed

OS checks validity of address, seeks page frame
— If selected frame 1s dirty, write it to disk

OS brings scheduled new page in from disk
Page tables updated

Faulting instruction backed up to when it began
Faulting process scheduled

Registers restored and program continues

24

»*
Instruction Backup X

MOVE.L #6(A1), 2(A0)

< 16 Bits >
1000 MOVE | Opcode
1002 6 } First operand
1004 2 } Second operand

An instruction causing a page fault

25

Locking Pages in Memory

2 Sometimes may need to lock a page in memory

— 1.e. prohibit its eviction from memory

2 Proc 1ssues call for read from device into buffer

— while waiting for I/0, another processes starts up

— has a page fault

— buffer for the first proc may be chosen to be paged out
2 Need to specify some pages locked

— exempted from being target pages

26

