
11

Memory: Paging System
Instructor: Hengming Zou, Ph.D.

In Pursuit of Absolute Simplicity 求于至简，归于永恒

22

Content

 Space Management
 Design issues for paging systems
 Policy and mechanism

33

Space Management

 Need keep track of memory used and available
 Two options to keep track of memory space
 Bit map approach

– Divide memory into allocation units
– Use one bit to mark if the unit is allocated or not

 Linked list approach
– Divide memory into allocation units
– Use a linked list to indicate allocated and available units in chunks

44

Space Management

Memory allocation

Bit-map representation

c) Linked list representation

55

Space Management with Linked Lists

 What happens when units are released?
 May need to collapse linked list appropriately

66

Design Issues for Paging Systems

 Thrashing
 Local versus Global Allocation Policies
 Page size
 OS Involvement with Paging
 Page fault handling

77

Thrashing

 What would happen with lots of big processes,
– all actively using lots of virtual memory?
– Frequent page faults

 What happens when a work set is big than the available memory frames?
– Constant page fault to bring pages in and out
– This is called “thrashing”

88

Thrashing

 Average access time =
– hit rate * hit time + miss rate * miss time
– e.g. hit time = .0001 ms, miss time = 10 ms

 100% hit rate:
– average access time is .0001 ms

 99% hit rate:
 90% hit rate:

99

Solutions to Thrashing

 If a single process is actively using more pages than can fit
– there’s no solution
– that process (at least) will thrash

 If cause is the combination of several processes
– Can alleviate by swapping all pages of a process out to disk
– That process won’t run at all

→but other processes will run much faster
– Overall performance improves

 But be careful of Belady's Anomaly

1010

Belady's Anomaly

1111

Local versus Global Allocation

 When evict a page, do we only look at
– pages of the same process for possible eviction

→Local allocation policy
– Or do we look at the whole memory for victim?

→Global allocation policy

1212

Local versus Global Allocation

 Global replacement:
– Consider all pages equally for eviction need

 Local replacement:
– Only consider pages belonging to the process needing a new page when

looking for a page to evict
– But how to set the # of pages assigned to a process?

 Generally, global has lower overall miss rate
– but local is more “fair”

1313

Local versus Global Allocation

Local
policy

Global
policy

1414

Local versus Global Allocation

 In global allocation policy, use PFF to manage the allocation
– PFF  page fault frequency

 If PFF is large, allocate more memory frames
 Otherwise, decrease the number of frames
 Goal is to maintain an acceptable PFF

1515

Page fault rate as a function of # of page frames assigned

Local versus Global Allocation

1616

Page Size

 What happens if page size is small?
 What happens if page size is really big?
 Could we use a large page size but let other processes use the leftover

space in the page?
 Page size is typically a compromise

– e.g. 4 KB or 8 KB

 What happens to paging if virtual address space is sparse?
– most of the address space is invalid,
– with scattered valid regions

1717

Small Page Size

 Advantages
– less internal fragmentation
– better fit for various data structures, code sections
– less unused program in memory

 Disadvantages
– programs need many pages, larger page tables

 Therefore, to decide a good page size, one needs to balance page table
size and internal fragmentation

1818

Page Size

 Overhead due to PT and internal fragmentation can be calculate as:
– (s×e)/p+p/2

 s = average process size in bytes
 p = page size in bytes
 e = page entry

 Overhead is minimized when:
– P=sqrt(2×s×e)

Page table space

Internal fragmentation

1919

Fixed vs. Variable Size Partitions

 Fixed size (pages) must be compromise
– too small a size leads to a large translation table
– too large a size leads to internal fragmentation

 Variable size (segments) can adapt to the need
– but it’s hard to pack these variable size partitions into physical memory
– leading to external fragmentation

2020

Load Control

 Despite good designs, system may still thrash
 When PFF algorithm indicates:

– some processes need more memory
– but no processes need less

 Solution :
– Reduce # of processes competing for memory
– swap 1 or more to disk, divide up pages they held
– reconsider degree of multiprogramming

2121

Separate Instruction and Data Spaces

 With combined instruction and data space,
– programmers have to fit everything into 1 space

 By separating instruction and data space, we:
– Allows programmers more freedom
– Facility sharing of program text (code)

2222

Separate Instruction and Data Spaces

2323

OS Involvement with Paging

 Four times when OS involved with paging
 Process creation

– determine program size, create page table

 Process execution
– MMU reset for new process, TLB flushed

 Page fault time
– determine the virtual address that causes the fault
– swap target page out, needed page in

 Process termination time
– release page table, pages

2424

Page Fault Handling

 Hardware traps to kernel, general registers saved
 OS determines which virtual page needed
 OS checks validity of address, seeks page frame

– If selected frame is dirty, write it to disk

 OS brings scheduled new page in from disk
 Page tables updated
 Faulting instruction backed up to when it began
 Faulting process scheduled
 Registers restored and program continues

2525

Instruction Backup

An instruction causing a page fault

2626

Locking Pages in Memory

 Sometimes may need to lock a page in memory
– i.e. prohibit its eviction from memory

 Proc issues call for read from device into buffer
– while waiting for I/O, another processes starts up
– has a page fault
– buffer for the first proc may be chosen to be paged out

 Need to specify some pages locked
– exempted from being target pages

Computer Changes Life

