
11

Memory: Paging System
Instructor: Hengming Zou, Ph.D.

In Pursuit of Absolute Simplicity 求于至简，归于永恒

22

Content

 Paging
 Page table
 Multi-level translation
 Page replacement

33

Paging

 Allocate physical memory in terms of fixed-size chunks (pages)
– fixed unit makes it easier to allocate
– any free physical page can store any virtual page

 Divide virtual memory into same-sized pages
– Each virtual page can be in physical memory or paged out to disk

 Processes access memory by virtual addresses
– Each VM reference is translated into PM reference by the MMU

 Virtual address
– virtual page # (high bits of address, e.g. bits 31-12)
– offset (low bits of addr, e.g. bits 11-0 for 4 KB page)

44

Paging

55

Paging

 Page translation process:
– if (virtual page is invalid or non-resident or protected) {
– trap to OS fault handler
– } else {
– physical page # = pageTable[virtual page #].physPageNum
– }

 What must be changed on a context switch?
– Page table, registers, cache image
– Possibly memory images

66

Paging

 How does processor know that virtual page is not in physical memory?
– Through a valid/invalid bit in page table

 Pages can have different protections
– e.g. read, write, execute
– These information is also kept in page table

77

Valid vs. Resident

 Resident means a virtual page is in memory
– NOT an error for a program to access non-resident pages

 Valid means a virtual page is currently legal for the program to access

 Who makes a virtual page resident/non-resident?
 Who makes a virtual page valid/invalid?
 Why would a process want one of its virtual pages to be invalid?

88

Page Table

 Key component in a paging system
 A hardware data structure
 Used to keep track of virtual-physical page map

– One entry for each virtual page
– Also keep information concerning other relevant information

→such as read, write, execute, valid, etc.

 MMU uses it to perform addresses translation

99

Page Table Contents

 Resident bit:
– true if the virtual page is in physical memory

 Physical page # (if in physical memory)
 Dirty bit: set by MMU when page is written
 Reference bit: set by MMU when page is read or written
 Protection bits (readable, writable)

– set by operating system to control access to page
– Checked by hardware on each access

1010

Page Table Contents

 Does the hardware page table need to store the disk block # for non-
resident virtual pages?

 Really need hardware to maintain a “dirty” bit?
 How to reduce # of faults required to do this?
 Do we really need hardware to maintain a “reference” bit?

Typical page table entry

1111

Paging Table Example

 The relation between
– virtual addresses and
– physical memory addresses

→given by page table

1212

Paging

 Internal operation of
– MMU with 16
– 4 KB pages

1313

Paging Pros and Cons

 + simple memory allocation
 + can share lots of small pieces of an address space
 + easy to grow the address space

– Simply add a virtual page to the page table
– and find a free physical page to hold the virtual page before accessing it

1414

Paging Pros and Cons

 Problems with paging?
 The size of page table could be enormous
 Take 32 bits virtual address for example
 Assume the size of page is 4KB
 Then there are 65536 virtual pages
 For a 64 bit virtual address?

1515

Paging Pros and Cons

 The solution?
 Use multi-level translation!
 Break page tables into 2 or more levels
 Top-level page table always reside in memory
 Second-level page tables in memory as needed

1616

Multi-level Translation

 Standard page table is a simple array
– one degree of indirection

 Multi-level translation changes this into a tree
– multiple degrees of indirection

 Example: two-level page table
– Index into the level 1 page table using virtual address bits 31-22
– Index into the level 2 page table using virtual address bits 21-12
– Page offset: bits 11-0 (4 KB page)

1717

Multi-level Translation

1818

Multi-level Translation

 What info is stored in the level 1 page table?
– Information concerning secondary-level page tables

 What info is stored in the level 2 page table?
– Virtual-to-physical page mappings

1919

Multi-level Translation

 This is a two-level tree

Virtual address
bits 21-12

Physical
page #

0 10

1 15

2 20

3 2

0 1 2 3Level 1
Page table

Level 2
Page
table

Virtual address
bits 21-12

Physical
page #

0 10

1 15

2 20

3 2

NULL NULL

2020

Multi-level Translation

 How does this allow the translation data to take less space?
 How to use share memory when using multi-level page tables?
 What must be changed on a context switch?

 Another alternative:
– use segments in place of the level-1 page table
– This uses pages on level 2 (i.e. break each segment

2121

Multi-level Translation

 Pros and cons
 + space-efficient for sparse address spaces
 + easy memory allocation
 + lots of ways to share memory
 - two extra lookups per memory reference

2222

Inverted Page Table

 An alternate solution to big table size problem
 Rather than storing virtual-physical mapping
 We store physical-virtual mapping
 This significantly reduce the page table size

2323

Inverted Page Tables

2424

Comparing Basic Translation Schemes

 Base and bound:
– unit (and swapping) is an entire address space

 Segments: unit (and swapping) is a segment
– a few large, variable-sized segments per address space

 Page: unit (and swapping/paging) is a page
– lots of small, fixed-sized pages per address space
– How to modify paging to take less space?

2525

Translation Speed

 Paging involves 1 or more additional memory references
– This can be a big issue if not taking care of

 How to speed up the translation process?
 Solution:

– Translation look-aside buffer

2626

Translation Look-aside Buffer

 Facility to speed up memory access
 Abbreviated as TLB
 Caches translation from virtual page # to physical page #
 TLB conceptually caches the entire page table entry

– e.g. dirty bit, reference bit, protection

 If TLB contains the entry you’re looking for
– can skip all the translation steps above

 On TLB miss, figure out the translation by
– getting the user’s page table entry,
– store in the TLB, then restart the instruction

2727

A TLB to Speed Up Paging

 Does this change what happens on a context switch?

Page Replacement

2929

Replacement

 One design dimension in virtual memory is
– which page to replace when you need a free page?

 Goal is to reduce the number of page faults
– i.e. a page to be accessed is not in memory

 Modified page must first be saved
– unmodified just overwritten

 Better not to choose an often used page
– will probably need to be brought back in soon

3030

Replacement Algorithms

 Random replacement
 Optimal replacement
 NRU (not recently used) replacement
 FIFO (first in first out) replacement
 Second chance replacement
 LRU (least recently used) replacement
 Clock replacement
 Work set replacement
 Work set clock replacement

3131

Random and Optimal Replacement

 Random replacement:
– Randomly pick a page to replace
– Easy to implement, but poor results

 Optimal Replacement:
– Replace page needed at farthest point in future

→i.e. page that won’t be used for the longest time
→this yields the minimum number of misses
→but requires knowledge of the future

– Forecast future is difficult if at all possible

3232

NRU Replacement

 Replace page not recently used
 Each page has Reference bit, Modified bit

– bits are set when page is referenced, modified

 Pages are classified into four classes:
– not referenced, not modified
– not referenced, modified
– referenced, not modified
– referenced, modified

 NRU removes page at random
– from lowest numbered non empty class

3333

FIFO Replacement

 Replace the page that was brought into memory the longest time ago

 Maintain a linked list of all pages
– in order they came into memory

 Page at beginning of list replaced

 Unfortunately, this can replace popular pages that are brought into
memory a long time ago (and used frequently since then)

3434

Second Chance Algorithm

 A modification to FIFO
 Just as FIFO but page evicted only if R bit is 0
 If R bit is 1, the page is put behind the list

– And the R bit is cleared

 i.e. page brought in the longest time ago but with R bit set is given a
second chance

3535

Second Chance Algorithm

Page list if fault occurs at time 20, A has R bit set
(numbers above pages are loading times)

3636

The Clock Algorithm

 Maintain “referenced” bit for each resident page
– set automatically when the page is referenced

 Reference bit can be cleared by OS
 The resident page organized into a clock cycle
 A clock hand points to one of the pages

3737

The Clock Algorithm

 To find a page to evict:
– look at page being pointed to by clock hand

 reference=0:
– means page hasn’t been accessed in a long time (since last sweep)

 reference=1:
– means page has been accessed since your last sweep. What to do?

3838

The Clock Algorithm

3939

The Clock Algorithm

 Can this infinite loop?
 What if it finds all pages referenced since the last sweep?
 New pages are put behind the clock hand, with reference=1

 Why is hardware support needed to maintain reference bit?
 What is the difference between clock and second chance algorithm?

– How can you identify an “old” page?
– The standard need not be time

4040

LRU Replacement

 LRU stands for Least Recently Used
 Use past references to predict the future

– temporal locality

 If a page hasn’t been used for a long time
– it probably won’t be used again for a long time

4141

LRU Replacement

 LRU is an approximation to OPT
 Can we approximate LRU to make it easier to implement without

increasing miss rate too much?
 Basic idea is to replace an old page

– not necessarily the oldest page

4242

LRU Replacement

 Must keep a linked list of pages
– most recently used at front, least at rear
– update this list every memory reference !!
– Can be pure counting or pure timing scheme
– If purely timing, reduce to a special FIFO

 Alternatively use counter in each page table entry
– choose page with lowest value counter
– periodically zero the counter
– Pure counting scheme

4343

Implementing LRU with Matrix

 Another option is to use n×n matrix
– Here n is the number of pages in virtual space

 The matrix is set to zero initially
 Whenever a page k is referenced:

– Row k is to all one, then column k is set to all zero

 Whenever need to pick a page to evict
– Pick the one with the smallest number (row value)

 Pure timing scheme

4444

Implementing LRU with Matrix

 Pages referenced in order 0,1,2,3,2,1,0,3,2,3

0000
0000
0000
1110

Page
0 1 2 3

0
1
2
3 0000

0000
1101
1100

Page
0 1 2 3

0000
1011
1001
1000

Page
0 1 2 3

0111
0011
0001
0000

Page
0 1 2 3

0011
1011
0001
0000

Page
0 1 2 3

0001
1001
1101
00000

1
2
3 0000

1000
1100
1110

0111
0000
0100
0110

0011
1011
0000
0010

0111
0011
0000
0010

4545

Implementing LRU with Aging

 Each page corresponding to a shift register
– Shift register is initially set to zero

 At every clock tick:
– the value of the shift is shifted one bit right, and
– the R bit is added to the left most bit of corresponding shifter

 Whenever need to pick a page to evict
– Pick the one with the smallest number

 A combined timing and counting scheme

4646

Implementing LRU with Aging

4747

The Working Set Algorithm

 The working set is
– the set of pages used by the k most recent memory references
– all pages used in last T seconds or T instructions

 w(k,t) is the size of the working set at time, t
 larger working set ==>

– process needs more physical memory to run well
– i.e. avoid thrashing

4848

The Working Set Algorithm

 Sum of all working sets should fit in memory
– otherwise system will thrash

 Only run a set of processes whose working sets all fit in memory
– this is called a “balance set”

 How to measure size of working set for a process?

4949

The Working Set Algorithm

5050

The Working Set Algorithm

Work set changes as time passes but stabilizes after

k (most recent references)

5151

The Work Set Clock Algorithm

 Combine work set algorithm with clock algorithm
 Pages organized into a clock cycle
 Each page has a time of last use and R bit
 Whenever needs to evict a page:

– Inspect from the page pointed by the clock hand
– The 1st page that with 0 R bit & is outside work set is evicted

5252

Page Replacement Algorithm Review

5353

Drawback of Paging

 In a paging system, each process occupies one virtual address space
 This may be inconvenient because

– different sections of the process can grow or shrink independently

5454

Drawback of Paging

 One-dimensional
address space with
growing tables

 One table may bump
into another

The Solution:

SEGMENTATION!

Computer Changes Life

