Memory: Paging System

Instructor: Hengming Zou, Ph.D.

SRS S APiE

REEH,

3 F i

Content

2 Paging
> Page table
2 Multi-level translation

2 Page replacement

* X x
x ¥

Paging -

2 Allocate physical memory in terms of fixed-size chunks (pages)

— fixed unit makes it easier to allocate

— any free physical page can store any virtual page
2 Divide virtual memory into same-sized pages

— Each virtual page can be in physical memory or paged out to disk
2 Processes access memory by virtual addresses

— Each VM reference is translated into PM reference by the MMU
2 Virtual address

— virtual page # (high bits of address, e.g. bits 31-12)

— offset (low bits of addr, e.g. bits 11-0 for 4 KB page)

Paging

The CPU sends virtual
CPU addresses to the MMU

package

CPU 1>

/ Memory \
_ management emory

unit

Disk
controller

]

The MMU sends physical
addresses to the memory

l Bus

*
Paging X

2 Page translation process:
— 1f (virtual page 1s invalid or non-resident or protected) {
— trap to OS fault handler
— }else {
— physical page # = pageTable[virtual page #].physPageNum
-

2 What must be changed on a context switch?
— Page table, registers, cache image

— Possibly memory images

**<K
Pagin X ¥
ging x *

2 How does processor know that virtual page is not in physical memory?
— Through a valid/invalid bit in page table

2 Pages can have different protections
— e.g. read, write, execute

— These information is also kept in page table

* X x
Valid vs. Resident x »
*x &

2 Resident means a virtual page is in memory

— NOT an error for a program to access non-resident pages

2 Valid means a virtual page is currently legal for the program to access

2 Who makes a virtual page resident/non-resident?
2 Who makes a virtual page valid/invalid?

2 Why would a process want one of its virtual pages to be invalid?

Page Table

2 Key component in a paging system

2 A hardware data structure

2 Used to keep track of virtual-physical page map
— One entry for each virtual page

— Also keep information concerning other relevant information

—such as read, write, execute, valid, etc.

2 MMU uses it to perform addresses translation

Page Table Contents

2 Resident bit:
— true if the virtual page is in physical memory
2 Physical page # (if in physical memory)
2 Dirty bit: set by MMU when page 1s written
2 Reference bit: set by MMU when page is read or written
2 Protection bits (readable, writable)

— set by operating system to control access to page

— Checked by hardware on each access

Page Table Contents

»*
%%

*
X

*x Ok

2 Does the hardware page table need to store the disk block # for non-
resident virtual pages?

2 Really need hardware to maintain a “dirty” bit?

2 How to reduce # of faults required to do this?

2 Do we really need hardware to maintain a “reference” bit?

Caching
disabled

Modified

/

Present/absent

/

A

A

14

Page frame number

\

\

Referenced Protection

Typical page table entry

10

Virtual

address »
° space
Paging Table Example P ¥
60K-64K X *x Sk
. 56K-60K X } Virtual page
2 The relation between -
— virtual addresses and 48K-52K X
— physical memory addresses 44K-48K| 7
) b tabl 40K-44K X S
—given by page table ysica
36K-40K | 5 yTiStHoty
32K-36K X address
28K-32K X 28K-32K
24K-28K X 24K-28K
20K-24K 3 20K-24K
16K-20K 4 16K-20K
12K-16K 0 12K-16K
8K-12K 6 8K-12K
4K-8K 1 4K-8K
0K-4K 2

}\OK-4K

Page frame

11

Paging

2 Internal operation of
— MMU with 16
— 4 KB pages

1(0]0|0 (o W ol Kol Ko} o) 0|0
15| 000 | O
14] 000 | O
13| 000 | O
12| 000 | O
111 111 1
10| 000 | O
oL 191] 12-bit offset
-bit offse
Page LI copied directly
table 7 000 [0 from input
6 000 0 to output
51 011 1
4(100 1
3| 000 1
21 110 1 110
1| 001 1 . .
| .—Presen
L § absent bit
Virtual page = 2 is used
as an index into the
page table
110]0]0 0]/0|0]|0]|O|O 0|0

Lok

Outgoing
physical *
address

(24580) L

Incoming
virtual
address
(8196)

12

Paging Pros and Cons

2 + simple memory allocation
2 + can share lots of small pieces of an address space
2 + easy to grow the address space
— Simply add a virtual page to the page table
— and find a free physical page to hold the virtual page before accessing it

13

Paging Pros and Cons

2 Problems with paging?

2 The size of page table could be enormous
2 Take 32 bits virtual address for example
2 Assume the size of page 1s 4KB

2 Then there are 65536 virtual pages

2 For a 64 bit virtual address?

14

Paging Pros and Cons

2 The solution?

2 Use multi-level translation!

2 Break page tables into 2 or more levels

2 Top-level page table always reside in memory

2 Second-level page tables in memory as needed

15

Multi-level Translation

2 Standard page table is a simple array
— one degree of indirection
2 Multi-level translation changes this into a tree

— multiple degrees of indirection

2 Example: two-level page table
— Index into the level 1 page table using virtual address bits 31-22
— Index into the level 2 page table using virtual address bits 21-12
— Page offset: bits 11-0 (4 KB page)

16

oecuna-ievel

page tables

* X x
x ¥

Multi-level Translation /
—— Page * *
—— | table for
1 » [the top
1, | 4Mof
1, | memory
~—
T
Top-level ’
page table
1023 /
/
. 6 1
Bits 10 10 12 5 -
PT1 | PT2| Offset 4 o -
3 —4—
(@) 2 1,
1 —
0 \\ ~—
1023
6 ——
5 e —
4 —t
3 4 To
5 1, pages
1 —
0 >

17

Multi-level Translation

2 What info is stored in the level 1 page table?

— Information concerning secondary-level page tables
2 What info is stored 1n the level 2 page table?

— Virtual-to-physical page mappings

18

»* X
Multi-level Translation x X
*x ok
2 This 1s a two-level tree
Level 1
Page table 0 3
\ NULL NULL

Virtual address Physical Virtual address Physical

bits 21-12 page # bits 21-12 page #

0 10 Level 2 0 10

1 15 Page 1 15

5 20 table 5 0

2 3 2

19

Multi-level Translation

2 How does this allow the translation data to take less space?

2 How to use share memory when using multi-level page tables?

2 What must be changed on a context switch?

2 Another alternative:

— use segments in place of the level-1 page table

— This uses pages on level 2 (i.e. break each segment

20

Multi-level Translation

2 Pros and cons

2 + space-efficient for sparse address spaces
2 + easy memory allocation

2 + lots of ways to share memory

2 -two extra lookups per memory reference

21

Inverted Page Table

2 An alternate solution to big table size problem
2 Rather than storing virtual-physical mapping
2 We store physical-virtual mapping

2 This significantly reduce the page table size

22

b S
Inverted Page Tables x ¥
*x
Traditional page
table with an entry
for each of the 252
pages
292 -1
256-MB physical
memory has 216
4-KB page frames Hash table
216 _1 216 4 — I H I]
— 1]
0 T 0 OT —{— T 1
Indexed Indexed /’ \\
by virtual by hash on Virtual Page
virtual page page frame

page

23

Comparing Basic Translation Schemes

2 Base and bound:

— unit (and swapping) is an entire address space
2 Segments: unit (and swapping) 1s a segment

— a few large, variable-sized segments per address space
2 Page: unit (and swapping/paging) is a page

— lots of small, fixed-sized pages per address space

— How to modify paging to take less space?

24

*
Translation Speed x

2 Paging involves 1 or more additional memory references

— This can be a big issue if not taking care of
2 How to speed up the translation process?
2 Solution:

— Translation look-aside buffer

25

Translation Look-aside Buffer

2 Facility to speed up memory access

> Abbreviated as TLB

2 Caches translation from virtual page # to physical page #
2 TLB conceptually caches the entire page table entry

— e.g. dirty bit, reference bit, protection

2 If TLB contains the entry you're looking for

— can skip all the translation steps above

2 On TLB miss, figure out the translation by

~— getting the user’s page table entry,
il

, %!_;\— store in the TLB, then restart the instruction

.

: 2

26

* X
A TLB to Speed Up Paging 4* *’*
Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

> Dges this change what happens on a context switch?

27

Page Replacement

Replacement

2 One design dimension in virtual memory is
— which page to replace when you need a free page?
2 Goal 1s to reduce the number of page faults

— 1.e. a page to be accessed is not in memory

2 Modified page must first be saved
— unmodified just overwritten
2 Better not to choose an often used page

— will probably need to be brought back in soon

29

Replacement Algorithms

Random replacement

Optimal replacement

NRU (not recently used) replacement
FIFO (first in first out) replacement
Second chance replacement

LRU (least recently used) replacement
Clock replacement

Work set replacement

=
=
=
=
=
=
=
=
=

Work set clock replacement

30

Random and Optimal Replacement

2 Random replacement:
— Randomly pick a page to replace

— Easy to implement, but poor results

2 Optimal Replacement:
— Replace page needed at farthest point in future
—1.€. page that won't be used for the longest time
—this yields the minimum number of misses
—but requires knowledge of the future

— Forecast future 1s difficult if at all possible

31

NRU Replacement

2 Replace page not recently used
2 Each page has Reference bit, Modified bit

bits are set when page is referenced, modified

2 Pages are classified into four classes:

not referenced, not modified
not referenced, modified
referenced, not modified

referenced, modified

2 NRU removes page at random

from lowest numbered non empty class

32

* * x
¥ *

x ok
2 Replace the page that was brought into memory the longest time ago

FIFO Replacement

2 Maintain a linked list of all pages
— 1n order they came into memory

2 Page at beginning of list replaced

2 Unfortunately, this can replace popular pages that are brought into
memory a long time ago (and used frequently since then)

33

*
Second Chance Algorithm X

2 A modification to FIFO
2 Just as FIFO but page evicted only if R bit is 0

2 If R bitis 1, the page is put behind the list
— And the R bit is cleared

2 1.e. page brought in the longest time ago but with R bit set 1s given a
second chance

34

Second Chance Algorithm

Page loaded first

Most recently
s loaded page

A is treated like a
g newly loaded page

\ 0 7 8 12 14 15 18

A E F G H
(a)

3 8 12 14 15 18 20

B D E F G H A

Page list 1f fault occurs at time 20, A has R bit set

b 2

LQumbers above pages are loading times)

The Clock Algorithm

2 Maintain “referenced” bit for each resident page

— set automatically when the page is referenced
2 Reference bit can be cleared by OS
2 The resident page organized into a clock cycle

2 A clock hand points to one of the pages

36

The Clock Algorithm

2 To find a page to evict:

— look at page being pointed to by clock hand
2 reference=0:

— means page hasn’t been accessed in a long time (since last sweep)
2 reference=1:

— means page has been accessed since your last sweep. What to do?

37

b S
The Clock Algorithm x X

When a page fault occurs,
the page the hand is
] 5 pointing to is inspected.

The action taken depends
on the R bit:
R = 0: Evict the page
R = 1: Clear R and advance hand

38

The Clock Algorithm

2 Can this infinite loop?
2 What if 1t finds all pages referenced since the last sweep?

2 New pages are put behind the clock hand, with reference=1

2 Why is hardware support needed to maintain reference bit?
2 What 1s the difference between clock and second chance algorithm?
— How can you identify an “old” page?

— The standard need not be time

39

LRU Replacement

2 LRU stands for Least Recently Used

2 Use past references to predict the future
— temporal locality
2 If a page hasn’t been used for a long time

— 1t probably won't be used again for a long time

40

LRU Replacement

* X x
x ¥
*x *

2 LRU 1s an approximation to OPT

2 Can we approximate LRU to make it easier to implement without
increasing miss rate too much?

2 Basic 1dea 1s to replace an old page

— not necessarily the oldest page

41

LRU Replacement

2 Must keep a linked list of pages

— most recently used at front, least at rear

— update this list every memory reference !!
— Can be pure counting or pure timing scheme
— If purely timing, reduce to a special FIFO
2 Alternatively use counter in each page table entry
— choose page with lowest value counter
— periodically zero the counter

— Pure counting scheme

42

Implementing LRU with Matrix

2 Another option 1s to use n X n matrix
— Here n is the number of pages in virtual space
2 The matrix is set to zero 1nitially
2 Whenever a page k 1s referenced:
— Row k is to all one, then column k is set to all zero
2 Whenever need to pick a page to evict

— Pick the one with the smallest number (row value)

2 Pure timing scheme

43

Implementing LRU with Matrix

2 Pages referenced in order 0,1,2,3,2,1,0,3,2,3

(e
O A
en
<
AL —

)

(e
O A
en
<
AL —

)

(@)
(O Q\|
en
<
AL —

)

(@)
(O Q\|
en
<
AL —

)

(e
O A
en
<
AL —

)

0

0

0010

0[0(0|O0

1

0[0(0|O0

000

1

1

0[0(0|O0

1

1

0[0(0|O0

1

1
1

0

1

0]0

1

0

1

0010
1
1

0{0(0]0

0

0/0(0|O0

1

1
1

1

1

0
0

1

0

1

0{0(0]0
0{0(0]0

0

000

0{0(0]0

1

00

110]0[10]O0

210[0(0(0

31001010

01010010

1

2

44

Implementing LRU with Aging

2 Each page corresponding to a shift register

— Shift register is initially set to zero
2 Atevery clock tick:

— the value of the shift is shifted one bit right, and

— the R bit 1s added to the left most bit of corresponding shifter
2 Whenever need to pick a page to evict

— Pick the one with the smallest number

2 A combined timing and counting scheme

45

Implementing LRU with Aging

* X x
x ¥

*x

| | | |

R bits for | R bits for | R bits for I R bits for I R bits for

pages 0-5, | pages 0-5, I pages 0-5, l pages 0-5, I pages 0-5,

clock tick O | clock tick 1 : clock tick 2 : clock tick 3 : clock tick 4
| | | |

ol1|o]1 i 1lolo|1 i 1lol1]o i ololo]1 i 1]1]olo
! : : :
| I | |
Page : : : :
| : | :

o| 10000000 | 11000000 | 11100000 | 11110000 | 01111000
| I | |
| I | |

1| 00000000 i 10000000 i 11000000 i 01100000 i 10110000
| I | |
| | | |

2| 10000000 i 01000000 i 00100000 i 00100000 i 10001000
| I | |
1 I | |

3| 00000000 ; 00000000 i 10000000 i 01000000 i 00100000
| | | |
1 I | |

4| 10000000 : 11000000 : 01100000 : 10110000 / 01011000
I		
I		

10000000 ! 01000000 : 10100000 ! 01010000 ! 00101000
| | | |

(b)

(c)

(d)

(e)

The Working Set Algorithm

2 The working set is

— the set of pages used by the k most recent memory references

— all pages used in last T seconds or T instructions
> w(k,1) is the size of the working set at time, t
2 larger working set ==>

— process needs more physical memory to run well

— 1.e. avoid thrashing

47

The Working Set Algorithm

2 Sum of all working sets should fit in memory

— otherwise system will thrash

2 Only run a set of processes whose working sets all fit in memory

— this 1s called a “balance set”

2 How to measure size of working set for a process?

48

b S
The Working Set Algorithm x X
*x Ok
| 2204 | Current virtual time
Information about . R (Referenced) bit
one page { 2084 1/
2003 1
A
Time of last use ———>- 1980 | 1 Scan all pages examining R bit:
if (R==1)
Page referenced 1213 9 set time of last use to current virtual time
during this tick 572 **1
if (R ==0 and age > 1)
5020 3 remove this page
2032 1 if (R == 0 and age < ’C)
Page not. referenced m—y remember the smallest time
uring this tick
y 3\ 1620__] 0
’ 3 b/ Page table

-,

The Working Set Algorithm

wik,1)

K (most recent references)

= Work set changes as time passes but stabilizes after

EH\

50

The Work Set Clock Algorithm

2 Combine work set algorithm with clock algorithm
2 Pages organized into a clock cycle
2 Each page has a time of last use and R bit

2 Whenever needs to evict a page:
— Inspect from the page pointed by the clock hand
— The 1% page that with 0 R bit & 1s outside work set 1s evicted

51

Page Replacement Algorithm Review

* X x
x ¥
x *

Algorithm

Comment

Optimal

Not implementable, but useful as a benchmark

NRU (Not Recently Used)

Very crude

FIFO (First-In, First-Out)

Might throw out important pages

Second chance

Big improvement over FIFO

Clock

Realistic

LRU (Least Recently Used)

Excellent, but difficult to implement exactly

NFU (Not Frequently Used)

Fairly crude approximation to LRU

Aging

Efficient algorithm that approximates LRU well

Working set

Somewhat expensive to implement

WSClock

Good efficient algorithm

52

* X x
Drawback of Paging *,K **

2 In a paging system, each process occupies one virtual address space

2 This may be inconvenient because

— different sections of the process can grow or shrink independently

53

Drawback of Paging

2 One-dimensional
address space with
growing tables

2 One table may bump
into another

The Solution:

SEGMENTATION!

Address space
allocated to the
parse tree

Virtual address space

Call stack *

Parse tree

Constant table +

Source text f

Symbol table

} Free

Space currently being
used by the parse tree

Symbol table has
bumped into the
source text table

54

