
11

Memory Management
Instructor: Hengming Zou, Ph.D.

In Pursuit of Absolute Simplicity 求于至简，归于永恒

22

Lecture Arrangement

 Four lectures:
 Lecture 1: (3)

– Basic memory management

 Lecture 2: (3)
– Paging systems

 Lecture 3: (2)
– Segmentation systems

33

Lecture 1: Basic memory management

 Memory management environment
 Fixed location
 Base and bound
 Address translation

 Swapping
 Virtual memory

44

Lecture 2: Paging systems

 Paging
 Page table
 Page replacement
 Design issues for paging systems

55

Lecture 3: Segmentation Systems

 Drawback of paging system
 Segmentation systems
 Segmentation with paging
 Case study: Multics

66

Lecture 4: Advanced Topics

 Translation data
 Kernel vs. User Mode
 Passing Arguments to System Call
 Separation of Policy and Mechanism
 Case study: Linux Memory Management

Basic Memory Management

88

Content

 Memory management environment
 Memory hierarchy and virtual memory
 (Pure) segmentation
 Fixed location
 Fixed Partition

– Address translation
– Base and bound

 Swapping

99

Memory Management Environment

 Ideally programmers want memory that is
– Large, fast, and non volatile

 The Reality: the memory hierarchy:
– Cache: Small amount of fast, expensive memory –
– Main memory: Some medium-speed, medium price memory
– Disk storage: Gigabytes of slow, cheap memory

cache memory disk tape

Memory hierarchy

1010

Memory Management Environment

 Memory manager handles the memory hierarchy
– through virtual memory

 What is virtual memory:
– An illusion provided to the applications
– Built on top of the memory hierarchy

 Provides two abstractions:
– an address space that can be larger than the amount of physical memory
– a storage space that is fast than the physical memory

 In the future will provide a storage space that is durable

1111

Memory Management Objective

 Meet two address objectives:

 Address independence
– The address given by program is independent of physical address

 Address protection
– One process does not access another’s address space

1212

Basic Memory Management

 Pure Segmentation
– Treat each program as a single logical segment

 Can be further divided into:
 Fixed location

– Applies to uni-programming

 Fixed partitions
– Applies to multi-programming

 Swapping
– Applies to multi-programming

1313

Fixed Location for Uni-programming

 One process runs at a time
– One process occupies memory at a time

 Always load process into the same memory spot
 And reserve some space for the OS
 3 ways of organizing memory for an OS with one user process

OS in ROM

User
program

0xFFF…

0
OS in RAM

User
program

OS in ROM

User
Program

OS in RAM

1414

Fixed Location for Uni-programming

 Achieves address independence by
– Loading process into same physical memory location
– Therefore physical addresses can be computed before hand

 Achieve address protection by:
– Doing nothing!

 Problems with uni-programming?
– Load processes in its entirety (no enough space?)
– Waste resource (both CPU and Memory)

1515

Multi-programming

 More than one process is in memory at a time

 More must be done by memory management
– Need to support address translation

→Address from instruction may not be the final address
→Physical addresses cannot be computed before hand

– Need to support protection
→Each process cannot access other processes’ space

1616

Multiprogramming with Fixed Partitions

 The simplest form of memory mgmt for multiprogramming
– Memory are partitioned into fixed-size partitions
– Programs are loaded into fixed partitions

 Two options exist for loading programs into fixed memory partitions
– Separate input queues for each partition

→Incoming processes are allocated into fixed partition
– Single input queue

→Incoming processes can go to any partition
→Assume partition is big enough to hold the processes

1717

Multiprogramming with Fixed Partitions

1818

Multiprogramming Issues

 Cannot be sure where program will be loaded
– Many partitions exist that can be used to hold the program
– Address locations of variables can not be absolute
– Code routines cannot be absolute

 Solution:
– Use base and limit values
– Address added to base value to map to physical address
– Address locations larger than limit value is an error

1919

Multiprogramming Issues

 Protection processes from each other
– Must keep a program out of other processes’ partitions

 Solution:
– Address translation
– Must translate addresses issued by a process

→so they don’t conflict with addresses issued by other processes

2020

Address Translation

 Static address translation
– Translate addresses before execution
– Translation remains constant during execution

 Dynamic address translation
– Translate addresses during execution
– Translation may change during execution

2121

Address Translation

 Is it possible to:
– Run two processes at the same time (both in memory), and
– provide address independence with only static address translation?

 Does this achieve the other address space objective?
– No (i.e. does not offer address protection)

 Achieving all address space objectives (protection/independence)
– requires doing some work on every memory reference

 Solution:
– Dynamic address translation

2222

Dynamic Address Translation

 Translate every memory reference from virtual to physical address
 Virtual address:

– An address viewed by the user process
– The abstraction provided by the OS

 Physical address
– An address viewed by the physical memory

User
Process

Translator
(MMU)

Physical
memory

Virtual
address

Physical
address

2323

Benefit of Dynamic Translation

 Enforces protection
– One process can’t refer to another process’s address space

 Enables virtual memory
– A virtual address only needs to be in physical memory

→when it’s being accessed
– Change translations on the fly

→as different virtual addresses occupy physical memory

 Does dynamic address translation require hardware support?
– It’s better to have but not absolutely necessary

2424

Implement Translator

 Lots of ways to implement the translator
 Tradeoffs among:

– Flexibility (e.g. sharing, growth, virtual memory)
– Size of translation data
– Speed of translation

2525

Base and Bounds

 The simplest solution
 Load each process into contiguous regions of physical memory
 Prevent each process from accessing data outside its region

 if (virtual address > bound) {
 trap to kernel; kill process (core dump)
 } else {
 physical address = virtual address + base
 }

2626

Base and Bounds

 Process has illusion of running on its own dedicated machine
– with memory [0, bound)

Physical memory
0

base

base + bound

physical memory size

virtual memory
0

bound

2727

Base and Bounds

 This is similar to linker-loader
– But also protect processes from each other

 Only kernel can change base and bounds
 During context switch, must change all translation data

– (base and bounds registers)

 What to do when address space grows?

2828

Pros and Cons of Base and Bounds

 Pros:
– Low hardware cost

→ 2 registers, adder, comparator
– Low overhead

→Add and compare on each memory reference

 Cons:
– Hard for a single address space to be larger than physical memory
– But sum of all address spaces can be larger than physical memory

→Swap an entire address space out to disk
→Swap address space for new process in

2929

Cons of Base and Bounds

data (P2)

data (P1)
code

Physical memory

data (P1)
code

data (P2)
code

virtual memory virtual memory

virtual address
(process 1)

virtual address
(process 2)

Does this work under base and bound?

 Can’t share part of an address space between processes

3030

Cons of Base and Bounds

 Solution:
 Multiple sets of base and bounds

– Specifically, use two sets of base and bounds for two processes sharing
→one for code section, one for data section

data (P2)

data (P1)
code

Physical memory

data (P1)
code

data (P2)
code

virtual memory virtual memory

virtual address
(process 1)

virtual address
(process 2)

3131

1 Base-Limit & 2 Base-Limit Pairs

User program
and data

User program
and data

Operating
System

Address

0xFFFFFFFF

Limit

Base

0

User program

User-1 data

Operating
System

User-2 data

Registers
when

program 1
is running

Limit 2

Base 1

Base-2
Limit-1

Registers when
program 2 is running

Limit-2

Base-2

Limit-1

Base-1

3232

Swapping

 Fixed partitions is inflexible in utilizing the physical memory space
 A flexible management scheme allows varying partitions

 Swapping is the solution:
– Take processes out from memory and bring process into memory

 Memory allocation changes as:
– Processes come into memory
– Processes leave memory

3333

Swapping

操作
系统

B

A

操作
系统

B

A

C

操作
系统

B

C

操作
系统

B

C

D
操作
系统

D

C

操作
系统

A

操作
系统

A

D

C

3434

Swapping

 Problem with previous situation?
 Difficult to grow process space

– i.e. stack, data, etc.

 Solution:
– Allocating space for growing data segment
– Allocating space for growing stack & data segment

3535

Swapping

3636

External Fragmentation with Swap

 In a swap system, processes come and go
 Can leave a mishmash of available memory regions
 Some regions may be too small to be of any use
 Hard to grow address space

– Might have to move to different region of physical memory (which is slow)

3737

External Fragmentation

 P1 start:100 KB (phys. mem. 0-99 KB)
 P2 start:200 KB (phys. mem. 100-299 KB)
 P3 start:300 KB (phys. mem. 300-599 KB)
 P4 start:400 KB (phys. mem. 600-999 KB)
 P3 exits (frees phys. mem. 300-599 KB)
 P5 start:100 KB (phys. mem. 300-399 KB)
 P1 exits (frees phys. mem. 0-99 KB)
 P6 start:300 KB

3838

External Fragmentation

 300 KB are free (400-599 KB; 0-99 KB)
– but not contiguous

 This is called “external fragmentation”
– wasted memory between allocated regions

 Can waste lots of memory

3939

Strategies to Minimize Fragmentation

 Best fit:
– Allocate the smallest memory region that can satisfy the request

→(least amount of wasted space)

 First fit:
– Allocate the memory region that you find first that can satisfy the request

 In worst case, must re-allocate existing memory regions
– by copying them to another area

4040

Problem with Pure Segmentation

 Hard to grow address space (for a data structure for example)
 Unable to run program that is larger than physical memory
 External fragmentation

 How to extend more than one contiguous data structure in VM?
 How to run a program larger than physical memory?

– PAGING

Computer Changes Life

