Lock Implementation

Instructor: Hengming Zou, Ph.D.

=g S &
=
s dJ

-

2=l 4

= T ‘ .
¥ In Pursuit of Absolute Simplicity sk ¥,)3 F4&(E
il

Content

2 Lock Implementation
= Use interrupt enable and disable
2 Use test-and-set instruction

Implementing Locks

= So far we have used locks extensively

> We assumed that lock operations are atomic

= But how atomicity of lock is implemented?

2 Lock must be implemented on hardware operations

Concurrent programs

High level synchronization operations provided
by software (i.e. semaphore, lock, monitor)

Low-level atomic operations provide by hardware
(i.e. load/store, interrupt enable/disable, test & set)

Use Interrupt Disable/Enable

2 On uniprocessor, operation is atomic as long as

— context switch doesn’t occur in middle of operation
= How does thread get context switched out?

— interrupt

2 Prevent context switches at wrong time by preventing these events

Use Interrupt Disable/Enable

= With interrupt disable/enable to ensure atomicity,
— why do we need locks?
= User program could call interrupt disable
— before entering critical section
— and call interrupt enable after leaving critical section
— and make sure not to call yield in the critical section
< Could this work?
— Theoretically, yes; practically, No.

2 Therefore, it is better to leave the matter to the OS

* X x
Lock Implementation #1 x

*x Ok
2 Disable interrupts with busy waiting
< lock() {
= disable interrupts Why does lock() disable interrupts in the
inni ion?
- while (value 1= FREE) { beginning of the function”
= enable interrupts
- disable interrupts Why is it OK to disable interrupts in
lock()’s critical section
> 1}
= value = BUSY
- enable interrupts Why wasn’t it OK to disable interrupts
51 while user code was running?

Lock Implementation #1

2 unlock() {

=

=
=
=

disable interrupts
value = FREE
enable interrupts

Do we need to disable interrupts in unlock()?

Remember the x:=1 and x:=2 problem?

Read-Modify-Write Instructions

2 Another atomic primitive

= Modern processors provide an easier way
— with atomic read modify-write instructions

2 Read-modify-write atomically

— reads value from memory into a register
— Then writes new value to that memory location

Read-Modify-Write Instructions

2 test_and_set
— atomically writes 1 to a memory location (set)
— and returns the value that used to be there (test)

2 test_and set(X) {
= tmp =X

2 X=1

> return(tmp)

Lock Implementation #2

> Test & set with busy waiting

— (value is initially 0)

~ lock() {

-}

while (test_and_set(value) == 1) {}

— unlock() {

value =0

10

Lock Implementation #2

2 If lock is free (value = 0)
— test_and_set sets value to 1 and returns O,
— 5o the while loop finishes
< If lock is busy (value = 1)
— test_and_set doesn’t change the value and returns 1,
— so loop continues

11

Assembly Implementation

* X x
x ¥

*x Ok

mutex_lock:

TSL REGISTER, MUTEX
CMP REGISTER, #0

JNE ok

CALL thread_yield

JMP mutex_lock

ok: RET

mutex_unlock:
MOVE MUTEX, #0

copy mutex to register, set mutex to 1
was mutex zero?

If zero, mutex was unlocked, so return
mutex busy, schedule another thread
try again later

return to caller; CR entered

Istore a 0 in mutex
[return to caller

12

Strategy for Reducing Busy-Waiting

2 In method 1 & 2, waiting thread uses lots of CPU time
— Just checking for lock to become free

< Better for it to sleep and let other threads run

13

Lock Implementation #3

2 Interrupt disable, no busy-waiting

= Waiting thread gives up processor
— S0 that other threads (e.g. thread with lock) can run more quickly

2 Someone wakes up thread when the lock is free

14

Lock Implementation #3

lock() {

disable interrupts

If (value == FREE) {
value = BUSY

}else {
add thread to queue of threads waiting for this lock
switch to next run-able thread

}

enable interrupts

=
=
=
=
=
=
=
=
=
=

15

*
Lock Implementation #3 X

unlock() {
disable interrupts
value = FREE
If (any thread is waiting for this lock) {

value = BUSY
}

=
=
=
=
= move waiting thread from waiting queue to ready queue
=
=
= enable interrupts

=

16

* X x
Issue Lock Implementation #3 4* **

2 When should lock() re-enable interrupts before calling switch?
= lock() {
= disable interrupts

= If (value == FREE) {
> value = BUSY
= }else {
= add thread to queue of threads waiting for this lock

_ <«——0nly three places
= switch to next run-able thread

—

> }
= enable interrupts

Is this code correct?

17

Interrupt Disable/Enable Pattern

* X x
x ¥

*x ok
Enable interrupts before adding thread to wait queue?
lock() {
disable interrupts Remember the signal loss in PC?

If (lock is busy) {
enable interrupts When could this fail?

add thread to lock wait queue
switch to next run-able thread

3 &
-

Will this work?

18

* X
Interrupt Disable/Enable Pattern x »

Enable interrupts after adding thread to wait queue,
but before switching to next thread?

lock() {

disable interrupts

if (lock is busy) { When could this fail?
add thread to lock wait queue

enable interrupts

switch to next run-able thread

}

Will this work?

11 G
X n
N)
-..,-H“n-

19

* X
Interrupt Disable/Enable Pattern x

= But this fails if interrupt happens after thread enable interrupts
— lock() adds thread to wait queue
— lock() enables interrupts, interrupt causes preemption,
2 Preemption moves thread to ready queue
— Now thread is on two queues (wait and ready)!
2 Also, switch is likely to be a critical section
— Add thread to wait queue and switch must be atomic

20

*» X
Solution X »*

= Waiting thread leaves interrupts disabled

— when it calls switch
= Next thread to run has the responsibility of

— re-enabling interrupts before returning to user code
2 When waiting thread wakes up

— 1t returns from switch with interrupts disabled

2 Caveat:

— All threads promise to have interrupts disabled when they call switch
— All threads promise to re-enable interrupts after returned to from switch

21

* X
Solution x
x Ok
2 Thread A Thread B
= yield() {
= disable interrupts
= switch
= enable interrupts
>}
2 <user code runs>
2 lock() {
= disable interrupts
=
= switch
= back from switch
= enable interrupts
> ¥
= <user code runs>
= unlock() (move thread A to ready queue)
= yield() {
= disable interrupts
= switch

% back from switch
<. enable interrupts

22

* X x
x

Lock Implementation #4
* ok

< Test and set, minimal busy-waiting
2 Can’t implement locks using test & set without some busy-waiting
— but can minimize it

2 ldea:
— use busy waiting only to atomically execute lock code
— Give up CPU if busy

< Solution:
— Use an extra variable: guard

23

Lock Implementation #4

y
-
% =
7

lock() {
while(test_and_set(guard)) {

¥

If (value == FREE) {
value = BUSY

}else {
add thread to queue of threads waiting for this lock
switch to next run-able thread

¥
guard =0

24

A
Lock Implementation #4 x »
* *
unlock() {
while (test_and_set(guard)) {
by
value = FREE

If (any thread is waiting for this lock) {

move waiting thread from waiting queue to ready queue
value = BUSY

¥
guard =0

O}

25

Problems with Interrupt Approach

2 Interrupt disable works on a uniprocessor
— by preventing current thread from being switched out

= But this doesn’t work on a multi-processor

2 Disabling interrupts on one processor doesn’t
— prevent other processors from running

= Not acceptable (or provided) to modify interrupt disable
— to stop other processors from running

2 How about test & set on multi-processor system?

26

%Mffii%j

