hread o

Instructor: Hengming Zou, Ph.D.

fi In Pursuit of Absolute Simplicity SkFZEf , I3FXIE

Lock Implementation
L X

Synchronization

Content

2 Problem with process

< Thread
2 Thread model

2 Thread implementation
2 User level threads
2 Kernel level threads
2 Hybrid

< Thread cooperation
2 Non-determinism

Problems with process

2 While supporting multiprogramming on shared hardware
2 Itself is single threaded!
—1.e. a process can do only one thing at a time
—blocking call renders entire process un-run-able
2 Thus, time calls for something else
—threads

Threads

2 Invented to support multiprogramming on process level
> Manage OS complexity

—Multiple users, programs, 1/0 devices, etc.
2 Each thread dedicated to do one task

= Sequence of executing instructions from a program
—1.e. the running computation
2 Play analogy: one actor on stage in a play

Threads

2 threads decompose mix of activities into several parallel tasks

2 Each job can work independently of others

jobl

job2

job3

Thread 1

Thread 2

Thread 3

The Thread Model

Procl Proc?2 Proc 3
|

User <
space
‘\\\'Thread‘///,
Kernel Kernel
space |

3 threads each with 1 thread

» X
B
* ok
Process
|

t1t
Thread
Kernel

1 thread with 3 threads

Shared and Private Items

2 Some items shared by all threads in a thread

= Some items private to each thread

Per process items

Per thread 1items

Address space

Program counter

Global variables Registers
Open files Stack
Child threads State

Pending alarms

Signals and signal handlers

Accounting information

Shared and Private Items

Thread 1's
stack

Thread 2

Thread 1 Thread 3
\ /

_—~ Process

Thread 3's stack

Kernel

Each thread has its own stack

A Word Process w/3 Threads

Four score and seven
years ago, our fathers
bronght forth upon this
continent a new nation:

° conceived in liberty,

l and dedicated o the
proposition that all

men are created equal.

ow we ar engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We a met on
a great banlefield of
that war

We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. Ut is
altogether fitting and
proper that we should
oo this.

But, ina larger semse,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
gound. The bave
men, living and dead,

who stuggled here
have consecrated it, far
above omr poor pawer
to add or detract. The
warld will lirtle note,
nor long remember,
what we say here, but
it can mever forget
whatthey did hers

1t is for s the living,
mther, to be dedicated

here to the unfinished
work which they who
fought here have thus
far 50 nobly advanced.
1t is mther for vs to be
here dedicated to the
great task remaining
befor 1, that from
these honored dead we
take incrzased devotion
o that cawse for which

they gave the last full
measore of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
'under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the peaple

L

~

Input thread

%\/

Kernel

Backup thread

Disk

10

Implementation of Thread

2 How many options to implement thread?
2 Implement in kernel space

2 Implement in user space

2 Hybrid implementation

11

»
Kernel-Level Implementation X

2 Completely implemented in kernel space
2 OS acts as a scheduler

Process Thread
2 OS maintains information about threads \ /
—In additions to process \
Kernel-level implementation Sl r %
I
Process Thread

table table

12

Kernel-Level Implementation

2 Advantage:
—Easier to programming
—Blocking threads does not block process

2 Problems:
—Costly: need to trap into OS to switch threads
—OS space is limited (for maintaining info)
—Need to modifying OS!

13

User-Level Implementation

2 Implemented in user space
2 A run-time system acts as a scheduler
2 Threads voluntarily cooperate

—1.e. yield control to other threads

2 OS need not know about it U
ser

space <

Process

__/

Thread

\

(5

=
—
User-level implementation Kernel
space Kernel
/ \\
Run-time Thread Process
system table table

14

»
User-Level Implementation X

2 Advantage:
—Flexible, can be implemented on any OS
— Faster: no need to trap into OS
= Problems:
—Programming is tricky
—blocking threads block process!

< Question:
—How do we solve the problem of blocking thread blocks the process?

15

»
User-Level Implementation X

2 Modifying system calls to be unblocking
< Write a wrap around blocking calls
—1.e. call only when it is safe to do so

= Example: Scheduler Activations
— A technique solves the problem of blocking calls in user-level threads
2 Method:
—use up-call
2 Goal — mimic functionality of kernel threads
=gain performance of user space threads

.

: 2

16

Scheduler Activations

2 Kernel assigns virtual processors to thread
2 Runtime sys. allocate threads to processors
2 Blocking threads are handled by OS up-call

—1.e. OS notify runtime system about blocking calls

2 Problems?:
—Reliance on kernel (lower layer) calling

—procedures in user space (higher layer)
—Violates layered structure of OS design

=0S correctness depends on run-time system

.

1 2

17

»*
Hybrid Implementation X

2 Can we have the best of both worlds
—1.e. kernel-level and user-level implementations
= While avoiding the problems of either?

2 Hybrid implementation
—User-level threads are managed by runtime systems
—Kernel-level threads are managed by OS
— Multiplexing user-level threads onto kernel- level threads

18

* X
Hybrid Implementation x
x *
Multiple user threads
on a kernel thread
\ !
User
w i}/{ ’ space

Kernel

S S*- Kernel thread

Kernel
space

19

»
Multiple Threads X

2 Can have several threads in a single address space
—That is what thread is invented for

2 Play analogy: several actors on a single set
—Sometimes interact (e.g. dance together)
—Sometimes do independent tasks

2 Private state for a thread vs. global state shared between threads
—What private state must a thread have?
— Other state Is shared between all threads in a thread

20

»
Multiple Threads X

= Many programs are written in single-threaded threads
—Make them multithreaded iIs very tricky

Thread 1 Thread 2

2

Access (ermo set)

%

Q@
=
=
-

}

Open (errno overwritten)

§

% Conflicts between threads over
Errno inspected use of a global variable

21

» X
Multiple Threads x ¥
*x Sk
2 So what can we do about it?
= Many solutions: —
—Prohibit global variables code
—Assign each thread private global variables Thread s
Thread 1's
stack ~—
Thread 2's
/ stack
Thread 1's
Threads can have globals
Thread 2's

private global variables

globals

22

»
Cooperating Threads X

2 Often we create threads to cooperate:
—Each thread handles one request
—Each thread can issue a blocking disk 1/O,
—wait for 1/0 to finish
—then continue with next part of its request

2 Even though thread blocks, other threads can make progress
—and new threads can start to handle new requests

23

Cooperating Threads

2 Issues with cooperating threads?

= Where is the state of each request stored?
—In thread space shared by all threads?
—In private space of the thread?

2 How to communicate with each other?

2 How to synchronize with each other

24

* X x
Cooperating Threads x *
* ok

2 Ordering of events from different threads is non-deterministic
—different threads may have differing amounts of work done in 10s

o thread A ------------——m - >

Sthread B - - - - >

>threadC- - - - - - - - - - - >

25

* X x
Cooperating Threads x ¥
* ok

2 Consequence:

— Results of multi-threaded programming can be non-deterministic

> Example
—thread A: x=1
—thread B: x=2

2 Possible results?

2 Is 3 a possible output?
—yes

26

Atomic Operations

2 Another example:

—thread A

—1=0

—while (i < 10) {

— I++

-}

—print “A finished”
> Who will win?

thread B

=0

while (i >-10) {
|--

¥
print “B finished”

27

T

