Introduction: Main OS Concepts

Instructor: Hengming Zou, Ph.D.

' _In Pursuit of Absolute Simplicity &k FZ &, J3F&E

Content

Kernel and User Mode Programs
Processes

Memory

Files

System calls

Shell

=
=
=
=
=
=

Kernel and User Mode Programs

> Kernel Mode
— Privilegeded mode
— Strict assumptions about reliability/security of code
— Memory resident

2 User Mode:

— More flexible
— Simpler maintenance and debugging

Kernel and User Mode Programs

2 Functionality Implemented in Kernel
— CPU-, memory-, Input/Output managment
— Multiprocessor management, diagnosis, test
— Parts of file system and of the networking interface

2 Functionality Implemented in User
— Compiler, assembler, interpreter, linker/loader
— File system management
— Telecommunication
— Network management
— Editors, spreadsheets, user applications

Processes

=
=
=
=
=
=

Processes, process table, core image
Parent and child processes

Mutual exclusion and synchronization
Inter-process communication
Scheduling, signals

Deadlock and synchronization

* X
Processes ¥x ¥
x %
e ______E dead|0ck ___________ q@@
ol

(a) A potential deadlock

Process

(b) an actual deadlock

Process

Pipe
A | B IPC

*
Memory Management X

2 Basic memory management
— Segmentation, swapping, base and bound
< Virtual memory
— Memory hierarchy, address translation
2 Paging systems
— Page replacement, design issues for paging systems

2 Segmentation systems

— Segmentation with paging Dynamic Address Translation

User Virtual Translator Physical | Physical
| Process address (MMU) address memory

v

* X
Files x X
x ok
: : : t
= Files, directories, root ioo
< Path, working directory // / .
/
= Protection, rwx bits / / \
< File descriptor, handle tmp etc usr
= Special files, 1/0 devices \ 7
\ /]
\ /
é %) mia /pit
/
/| \
A sample file hierarchy / \

File Mounting

Root

/

/
A

)

N\

B

floppy

N

S

(a)

> Before mounting,

— files on floppy are inaccessible

= After mounting floppy on b,

At

.

: 2

T D files on floppy are part of file hierarchy

(b)

YD

System Calls

* X x
x ¥
X *

2 User programs access operating system services via system calls
< Parameter transmission via trap, register, stack
count = read (file, buffer, nbytes);

= Five Classes of System Calls
— Process control
— File manipulation
— Device manipulation
— Memory manipulation
— Information maintenance
— Communications

10

Steps In Making a System Call

Address
OxFFFFFFFF

User space <

RS

= Kernel space<
%perating system)

or

Return to caller

Trap to the kernel

5

Put code for read in register

10

Increment SP 11

~ Call read

Push fd

Push &buffer

—

Push nbytes

Y

Dispatch -~

Sys call
handler

}

Library
procedure
read

User program
calling read

11

Sys Calls For Process Mgmt

Call

Description

pid = fork()

Create a child process

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

S = execve(name, argv, environp

Replace a process’s core image

exit(status)

Terminate process & return status

12

Sys Calls For File Mgmt

Call

Description

fd = open(file, how, ...)

Open a file for reading or writing

s=close(fd)

Close an open file

n=read(fd, buffer, nbytes)

Read data from a file into a buffer

n=write(fd, buffer, nbytes)

Write data from buffer into a file

position=Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

13

Sys Calls For Directory Mgmt

Call

Description

S = mkdir(name, mode)

Create a new directory

S = rmdir(name)

Remove an empty directory

S = link(namel, name2)

Create a entry name2 pointing to namel

S = mount(special, name, flag)

Mount a file system

S = umount(special)

Unmount a file system

14

Sys Calls For Miscellaneous Tasks

Call

Description

S = chdir(dirname)

Change the working directory

S = chmod(name, mode)

Change a file’s protection bits

S = kill(pid, signal)

Send a signal to a process

Seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

15

* X
Some Win32 API calls x
x Ok
UNIX Win32 Description
Fork CreateProcess Create a new process
Waitpid | WaitForSingleObject Can wait for a process to exit
Execve (none) CreateProcess=fork+execve
Exit ExitProcess Terminate execution
Open CreateFile Create a file or open an existing file
Close CloseHandle Close a file
Read ReadFile Read data from a file
Write WriteFile Write data to a file
Lseek SetFilePointer Move the file pointer
Stat GetFileAttributesEx Get various file attributes

16

»
Some Win32 API calls x
x Ok
UNIX Win32 Description
Mkdir | CreateDirectory Create a new directory
Rmdir | RemoveDirectory Remove an empty directory
Link (none) Win32 does not support links
Unlink | Deletefile Destroy an existing file
Mount | (none) Win32 does not support mount
Umoun | (none) Win32 does not support umount
t
Chdir | SetCurrentDirectory Change the current working directory
Chmod | (none) Win32 does not support security (NT does)
Kill (none) Win32 does not support signals
GetLocalTime Get the current time

Time

[,

17

Shell

2 Command interpreter

< Displays prompt

2 Implements input/output redirection
= Background processes, job control
2 Pseudo terminals

18

* X
Shell Example x ¥
* ok
$ date
$ date >file

$ sort <filel >file2
$ cat filel file2 file3 > /dev/Ipl
$ make all >log 2>&1 &

19

»*
Implementing a Shell ¥

= Shell provides the user interface
— sh, csh, tcsh, bash, zsh, etc.
> Windows Explorer is similar
— looks like part of the operating system

— but we now know enough to write a shell as a standard user program

2 How to write a shell?

20

A Stripped Down Shell

* ¥ %
x X
* *

while (TRUE) {
type_prompt();
read command (command, parameters)
if (fork() '=0) {
/* Parent code */
waitpid(-1, &status, 0);
¥
else { /* Child code */

execve (command, parameters, 0);

/> repeat forever */

/> display prompt */

/* input from terminal */
/> fork off child process */

/> wait for child to exit */

/> execute command */

21

